首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, compact tension specimens with tilted cracks under monotonic fatigue loading were tested to investigate I + III mixed mode fatigue crack propagation in the material of No. 45 steel with the emphasis on the propagation rate expression and the path prediction. It is found that during the mode transformation process, the crack propagation rate is still controlled by the mode I stress intensity factor; and Paris equation also holds for the relationship between and ΔKI . Crack propagation path can be predicted only when both the crack mode transformation rate and propagation rate are available.  相似文献   

2.
This study examined fatigue propagation behaviour and fatigue life of weld root cracks under mixed mode I and III loading. Fatigue tests were performed on butt-welded joints with a continuous lack-of-penetration (LOP) inclined at angles of 0°, 15°, 30° or 45° to the normal direction of the uniaxial cyclic load. Branch and/or co-planar crack propagation was observed, depending on the initial mode I stress intensity factor (SIF) range. Co-planar crack propagation predominated when the SIF range was large. The fatigue crack propagation mode affected fatigue life; the life of branch crack propagation was longer than that of co-planar crack propagation. Using an initial equivalent SIF range based on a maximum strain energy release rate criterion, the results obtained from the 0°, 15°, 30°, and 45° specimens indicated almost the same fatigue lives, despite the different inclination angles.  相似文献   

3.
In this paper, compact tension specimens with tilted cracks under monotonic fatigue loading were tested to investigate I + III mixed mode fatigue crack propagation in the material of No. 45 steel with the emphasis on the mode transformation process. It is found that with the crack growth, I + III mixed mode changes to Mode I. Crack mode transformation is governed by the Mode III component and the transformation rate is a function of the relative magnitude of the Mode III stress intensity factor. However, even in the process of the crack mode transformation the fatigue crack propagation is controlled by the Mode I deformation.  相似文献   

4.
A steady state analysis is given which models rapid crack propagation in a pressurised pipe as a beam. The interaction of the gas escaping through the crack flares the pipe giving a greatly enhanced energy release rate G. The solution shows a clear maximum in G which is confirmed with numerical results. Experimental decompression times are also predicted by the model. Perturbations in the crack speed can be deduced from the steady state solution and these are shown to be harmonic and in good agreement with observations. It is also suggested that these speed oscillations could give rise to crack snaking. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
To study crack dynamic propagation behaviour and rock dynamic fracture toughness, a single cleavage triangle (SCT) specimen was proposed in this paper. By using these specimens and a drop‐weight test system, impact experiments were conducted, and the crack propagation velocity and the fracture time were measured by using crack propagation gauges. To examine the effectiveness of the SCT specimen and to predict the test results, finite difference numerical models were established by using AUTODYN code, and the simulation results showed that the crack propagation path agrees with the test results, and crack arrest phenomena could happen. Meanwhile, by using these numerical models, the crack dynamic propagation mechanism was investigated. Finite element code ABAQUS was applied in the calculation of crack dynamic stress intensity factors (SIFs) based on specimen dimension and the loading curves measured, and the curves of crack dynamic SIFs versus time were obtained. The fracture toughness (including initiation toughness and propagation toughness) was determined according to the fracture time and crack speeds measured by crack propagation gauges. The results show that the SCT specimen is applicable to the study of crack dynamic propagation behaviour and fracture toughness, and in the process of crack propagation, the propagation toughness decreases with crack propagation velocity, and the crack arrest phenomena could happen. The critical SIF of an arrest crack (or arrest toughness) was higher than the crack propagation toughness but was lower than the initiation toughness.  相似文献   

6.
王璀瑾  董伟  王强  吴智敏  曲秀华 《工程力学》2016,33(5):89-96,105
针对混凝土I型裂缝扩展问题,分别采用以起裂韧度为参数的裂缝扩展准则、最大拉应力准则以及裂尖处应力强度因子为零的裂缝扩展准则,数值模拟了强度等级C20、C40、C60、C80和C100的混凝土三点弯曲梁裂缝扩展全过程,获取了试件的荷载-裂缝口张开位移(P-CMOD)曲线并与试验结果进行了比较。结果表明,三种准则中以起裂韧度为参数的裂缝扩展准则计算得到的峰值荷载及P-CMOD全曲线与试验结果差别最小。随着混凝土强度等级的提高,最大拉应力准则以及裂尖处应力强度因子为零的裂缝扩展准则计算出的P-CMOD曲线与试验结果相比均有较为明显的偏离,但以起裂韧度为参数的裂缝扩展准则计算结果与试验曲线更为吻合。试验与计算结果表明,以起裂韧度为参数的裂缝扩展准则更适用于不同强度混凝土材料的断裂分析。  相似文献   

7.
The formulation of the problem of a rapidly propagating crack in a double cantilever beam specimen is re-examined using Reissner's variational principle. The governing equations are first solved to obtain the static compliance which is in good agreement with measured values. The equations of motion in conjunction with the energy balance criterion for a running crack are solved using a finite difference method. Predicted crack growth versus time, crack speed versus crack length and dynamic stress intensity factor versus crack length are all found to be in very good agreement with their measured counterparts for a polymer.
Résumé On réexamine la formulation du problème d'une fissure se propageant rapidement dans une éprouvette en poutre double cantilever en utilisant le principe variationnel de Reissner. Les équations de base sont en premier lieu résolue en vue d'obtenir une compliance statique en bon agrément avec les valeurs mesurées. Les équations de mouvement en relation avec un critère d'équilibre énergétique dans le cas d'une fissure en mouvement sont résolues en utilisant une méthode par différences finies. On trouve que la croissance prédite de la fissure en fonction du temps, la vitesse de propagation en fonction de la longueur de fissure et le factuer d'intensité des contraintes en fonction de la longueur de la fissure sont en excellent agrément avec les valeurs correspondantes mesurées dans le cas d'un polymère.
  相似文献   

8.
9.
In the present paper, dynamic crack propagation in rubber is analyzed numerically using the finite element method. The problem of a suddenly initiated crack at the center of stretched sheet is studied under plane stress conditions. A nonlinear finite element analysis using implicit time integration scheme is used. The bulk material behavior is described by finite-viscoelasticity theory and the fracture separation process is characterized using a cohesive zone model with a bilinear traction-separation law. Hence, the numerical model is able to model and predict the different contributions to the fracture toughness, i.e. the surface energy, viscoelastic dissipation, and inertia effects. The separation work per unit area and the strength of the cohesive zone have been parameterized, and their influence on the separation process has been investigated. A steadily propagating crack is obtained and the corresponding crack tip position and velocity history as well as the steady crack propagation velocity are evaluated and compared with experimental data. A minimum threshold stretch of 3.0 is required for crack propagation. The numerical model is able to predict the dynamic crack growth. It appears that the strength and the surface energy vary with the crack speed. Finally, the maximum principal stretch and stress distribution around steadily propagation crack tip suggest that crystallization and cavity formation may take place.  相似文献   

10.
The mechanism of mixed‐mode fatigue crack propagation was investigated in pure aluminum. Push‐pull fatigue tests were performed using two types of specimens. One was a round bar specimen having a blind hole, one was a plate specimen having a slit. The slit direction cut in the specimen was perpendicular or inclined 45 degrees relative to the centre of the specimen axis. In both cases, cracks propagated by mode I or by the mixed mode combining mode I and shear mode, depending on the testing conditions. In these cases the crack propagation rate was evaluated with a modified effective stress intensity factor range. Crack propagation retardation was observed in some specimens. However, it was found that the crack propagation rate could also be evaluated by the effective stress intensity factor range independent of the crack propagation mode.  相似文献   

11.
Abstract

In this paper, the transient analysis of semi‐infinite propagating cracks in piezoelectric materials subjected to dynamic anti‐plane concentrated body force is investigated. The crack surface is assumed to be covered with an infinitesimally thin, perfectly conducting electrode that is grounded. In analyzing this problem, it has characteristic lengths and a direct attempt towards solving this problem by transform and Wiener‐Hopf techniques (Noble, 1958) is not applicable. In order to solve this problem, a new fundamental solution for propagating cracks in piezoelectric materials is first established and the transient response of the propagating crack is obtained by superposition of the fundamental solution in the Laplace transform domain. The fundamental solution to be used is the responses of applying exponentially distributed traction in the Laplace transform domain on the propagating crack surface. Taking into account the quasi‐static approximation, exact analytical transient solutions for the dynamic stress intensity factor and the dynamic electric displacement intensity factor are obtained by using the Cagniard‐de Hoop method (Cagnard, 1939; de Hoop, 1960) of Laplace inversion and are expressed in explicit forms. Numerical calculations of dynamic intensity factors are evaluated and the results are discussed in detail. The transient solutions for stationary cracks have been shown to approach the corresponding static values after the shear wave of the piezoelectric material has passed the crack tip.  相似文献   

12.
为了对动态荷载作用下水泥粉煤灰砂浆的裂缝动态扩展行为进行研究,提出了一种大尺寸带V型底边的半圆边裂纹(SECVB)试件,其V形底部具有止裂功能。SECVB试件的V形底部设计为180°,150°和120°三个角度。采用落锤冲击装置进行了冲击试验,并使用裂纹扩展计(CPG)用于测量裂纹扩展的相关参数。利用有限差分程序AUTODYN对裂纹扩展行为进行了数值模拟,并用有限元程序ABAQUS计算了裂纹的动态应力强度因子(DSIF);根据CPG测量的裂纹萌生时间和扩展时间来确定临界应力强度因子。试验和数值模拟结果表明,SECVB试件适合于研究动态荷载作用下水泥粉煤灰砂浆的裂纹扩展行为和止裂行为。在裂纹扩展过程中,裂纹可能在一段时间内止裂,并且裂纹在起始时刻的断裂韧度高于裂纹扩展时的断裂韧度。  相似文献   

13.
14.
This is the third in a series of four papers in which problems of dynamic crack propagation are examined experimentally in large, thin sheets of Homalite-100 such that crack growth in an unbounded plate is simulated. In the first paper crack initiation resulting from stress wave loading to the crack tip as well as crack arrest were reported. It was found that for increasing rates of loading in the microsecond range the stress intensity required for initiation rises markedly. Crack arrest occurs abruptly without any deceleration phase at a stress intensity lower than that which causes initiation under quasi-static loading.In the second paper we analyze the occurrence of micro cracks at the front of the running main crack which control the rate of crack growth. The micro cracks are recorded by real time photography. By the same means it is shown that these micro cracks grow and turn away smoothly from the direction of the main crack in the process of branching.In the present paper we report results on crack propagation and branching. It is found that crack propagation occurs at a constant velocity although the stress intensity factor changes markedly. Furthermore, the velocity is determined by the stress wave induced intensity factor at initiation. The terminal velocity in Homalite-100 was found to be about half the Rayleigh wave speed (0.45 C r ). These observations are analyzed in terms of a microcrack model alluded to in the second paper of this series. A mechanism for crack branching is proposed which considers branching to be a natural evolution from a cloud of microcracks that accompany and lead the main crack. These results are believed to apply to quasi-brittle materials other than Homalite-100 and the reasons for this belief are discussed briefly in the first paper of this series.In the final paper of the series the effect of stress waves impinging on the tip of a rapidly moving crack is examined. Waves affect the velocity and the direction of propagation as well as the process of crack branching.  相似文献   

15.
An algorithm is presented which allows for fully automatic linear elastic low cycle fatigue (LCF) crack propagation calculations of mode I plane cracks in large structures by means of the finite element technique. The bulk of the algorithm consists of an automatic procedure to introduce the geometry of a plane crack with an arbitrary crack front in an existing three-dimensional (3-D) mesh. Once the K-distribution for the initial crack has been calculated, the use of the superelement technique reduces the computing time for the subsequent cycles by a factor of up to 40 or more. Two industrial examples illustrate the accuracy and effectiveness of the method. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
17.
During the experimental characterization of the mode I interlaminar fracture toughness of multidirectional composite laminates, the crack tends to migrate from the propagation plane (crack jumping) invalidating the tests. In an earlier numerical study [9], we reported that this problem could be eliminated by choosing the appropriate bending stiffness of the beam arms.  相似文献   

18.
The steady state propagation of a semi-infinite crack between two dissimilar viscoelastic solids is considered. By means of the Wiener-Hopf technique, the stress intensity factor is found as a function of the crack tip velocity and the material parameters. Results for an interface crack between an elastic and a viscoelastic medium are obtained as a special case. Various limiting cases are examined as a check on the accuracy of the results. Finally, graphs are presented which examine the salient features of the stress intensity factor.  相似文献   

19.
Results of “generation” (determination of dynamic stress-intensity factor variation with time, for a specified crack-propagation history) studies, as well as “prediction” (determination of crack-propagation history for specified dynamic fracture toughness vs crack-velocity relationships) studies of dynamic crack propagation in plane-stress/strain situations are presented and discussed in detail. These studies were conducted by using a transient finite element method wherein the propagating stress-singularities near the propagating crack-tip have been accounted for. Details of numerical procedures for both the generation and prediction calculations are succinctly described. In both the generation and prediction studies, the present numerical results are compared with available experimental data. It is found that the important problem of dynamic crack propagation prediction can be accurately handled with the present procedures.  相似文献   

20.
A simple analytical model is developed to accompany experimental work on rapid crack propagation and arrest in the DCB test specimen. The present work extends the beam-on-elastic foundation model used previously by taking account of shear deformation and of both translational and rotary inertia. Crack speeds predicted with the model are found to be in good agreement with the constant-speed behavior observed experimentally. It is demonstrated that kinetic energy makes an important contribution to maintaining unstable crack propagation and to crack arrest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号