首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Synthesis of monodispersed nanophase α-Fe2O3 (hematite) powder to be used as a red pigment in porcelains was investigated using microwave-hydrothermal and conventional-hydrothermal reactions using 0.018 M FeCl3·6H2O and 0.01 M HCl solutions at 100°–160°C. Acicular and yellow β-FeOOH (akaganite) particles 300 nm in length and 40 nm in thickness were dominantly formed at 100°C after 2–3 h, while spherical α-Fe2O3 particles 100–180 nm in diameter were preferentially formed after 13 h using a conventional-hydrothermal reaction. However, a microwave-hydrothermal reaction at 100°C led to monodispersed and red α-Fe2O3 particles 30–66 nm in diameter after 2 h without the formation of β-FeOOH particles. In this paper, the effect of microwave radiation during hydrothermal treatment at 100°–160°C on the formation yield, kinetics, morphology, phase type, and color of α-Fe2O3 was investigated.  相似文献   

2.
Preferential X-ray line broadenings in γ-Fe2o3 samples prepared from γ-FeOOH, α-FeOOH, N2H5Fe(N2H3-COO)3-H2O, FeOOCH3, and colloidal Fe3O4 are compared. Isotropic size and small crystallites are the origin of the uniform and enhanced X-ray line broadening in samples derived from hydrazinate and colloidal Fe3O4. Nonuniform line broadening in ex-α-FeOOH and ex-γ-FeOOH is due to an elongated crystallite shape and the presence of stacking faults, respectively. The thermal behavior of samples with low crystallite size and uniform line broadening is characterized by an exothermal recrystallization process simultaneous to the phase transformation γ-Fe203→α-Fe2O3.  相似文献   

3.
Single-crystalline α-Fe2O3 nanorods with a polyhedral configuration have been successfully synthesized via a facile hydrothermal process at 180°C. X-ray powder diffraction, transmission electron microscopy observations, field emission scanning electron microscopy, and selected area electron diffraction patterns were used to characterize the as-synthesized samples. The result reveals that goethite nanorods were first generated and then transformed into hematite via dehydration in the successive hydrothermal treatment, in which the α-Fe2O3 inherited the rod-like morphology of the goethite precursor. The effect of surfactant and treatment time on the phase and morphology of the final products has been studied, and a possible growth mechanism is proposed.  相似文献   

4.
Highly dispersed nanometer-sized α-Fe2O3 (hematite) and γ-Fe2O3 (maghemite) iron oxide particles were synthesized by the combustion method. Ferric nitrate was used as a precursor. X-ray diffractometer study revealed the phase purity of α- and γ-Fe2O3. Both the products were characterized using field emission scanning electron microscope and transmission electron microscope for particle size and morphology. Necked structure particle morphology was observed for the first time in both the iron oxides. The particle size was observed in the range of 25–55 nm. Photodecomposition of H2S for hydrogen generation was performed using α- and γ-Fe2O3. Good photocatalytic activity was obtained using α- and γ-Fe2O3 as photocatalysts under visible light irradiation.  相似文献   

5.
The effects of sintering temperature and cooling rate on the magnetic and crystallographic properties of lithium ferrite were studied. The magnetic moments and lattice parameters increased with increasing sintering temperature; these increases result from correlated oxygen and lithium oxide losses. Either annealing at lower temperatures or slow cooling under O2 causes reoxidation of the Fe2+ formed at higher temperatures with attendant decreases in moment and lattice parameter and gradual precipitation of α-Fe2O3 as a second phase. The products formed on rapid cooling are equivalent to solid solutions of spinel lithium ferrite with Fe3O4, and those formed on slow cooling, to solid solutions of lithium ferrite and γ-Fe2O3 with precipitation of α-Fe2O3. Lithium losses and α-Fe2O3 precipitate amounts are calculated. The magnetic moment of stoichiometric lithium ferrite at 25°C is 3736±20 G; the lattice parameter at 28°C is 8.3296±0.0005 Å.  相似文献   

6.
To produce a new red pigment for Japanese porcelains, some hematite (α-Fe2O3) powders produced by different methods were investigated by mixing them with lead-free frit powders and firing them on white porcelain plates at 800°C. Commercial hematite powders and uniform α-Fe2O3 powders 155 and 53 nm in diameter which were prepared using conventional- and microwave-hydrothermal reactions, respectively, were used as sources of red pigments. The morphology and dispersion of the above α-Fe2O3 powders were found to have a significant effect on the tone of red color for porcelain pigment.  相似文献   

7.
The microstructure and humidity-sensitive characteristics of α -Fe2O3 porous ceramic were investigated. Microporous α -Fe2O3 powders were obtained by controlling the topotactic decomposition reaction of α -FeOOH. Water vapor adsorption thermogravimetrical experiments were carried out in the relative humidity (rh) range 0% to 95% on the α -Fe2O3 powder and the 900°C sintered compact. The microstructure was investigated by SEM, TEM, Hg intrusion, and N2 adsorption porosimetry techniques. The humidity sensitivity was investigated by the impedance measurements technique in 0% to 95% rh on the compacts sintered at 50°C steps in the 850° to 1100°C range. Humidity response was found to be affected by the microstructure, i.e., the characteristics of the precursor powders and sintering temperatures.  相似文献   

8.
In recent years, the materials research focuses toward synthesis of finer and finer microstructural features. The unique properties of nanosized particles outweigh their higher production costs. Precipitation in microemulsion is one technique, which promises to produce small particles of controlled size and morphology at reasonable cost. The present study demonstrates the synthesis of nanocrystalline α-Fe2O3(hematite), Mn0.5Zn0.5Fe2O4, and Ni0.5Zn0.5Fe2O4 particles in a reverse micellar microemulsion system [water–iso-octane–AOT (sodium di-2ethylhexylsulfosuccinate)]. The synthesis of α-Fe2O3 is performed to obtain baseline data for the synthesis of Mn0.5Zn0.5Fe2O4 and Ni0.5Zn0.5Fe2O4 in the microemulsion system. Nanosized, spherical α-Fe2O3, Ni-Zn ferrite, and Mn-Zn ferrite particles (20–80 nm) with very narrow particle size distribution are synthesized. Crystallization of the particles is obtained at temperatures as low as 300°C.  相似文献   

9.
γ-Fe2O3 nanocrystallites dispersed in an amorphous silica matrix have been successfully prepared for the first time by mechanical activation of a chemistry-derived precursor at room temperature. The initial 10 h of mechanical activation triggered the formation of nanocrystallites of Fe3O4 in a highly activated matrix. Increasing the mechanical-activation time led to a phase transformation from Fe3O4 to γ-Fe2O3. The γ-Fe2O3 phase was well established after mechanical activation of the precursor for 30 h. Further increasing the mechanical-activation time to 40 h induced the formation of α-Fe2O3. The mechanical-activation-grown γ-Fe2O3 nanocrystallites were ∼10–12 nm in size and well dispersed in the silica matrix, as observed using TEM. They demonstrated superparamagnetic behavior at room temperature when measured using a Mössbauer spectrometer and a vibrating sample magnetometer (VSM). In addition, the γ-Fe2O3 derived from 30 h of mechanical activation exhibited a value of saturation magnetization as high as 62.6 emu/g.  相似文献   

10.
Single-phase BaCoTiFe10O19 (BaCoTi-M) nanoparticles were prepared by a modified sol–gel process, using metallic chlorides as starting materials. The physical chemistry process of BaCoTi-M formation, the interdependences between composition, technological conditions, microstructure, and magnetic properties were studied by X-ray diffraction (XRD), Fourier transform-infrared (FTIR), scanning electron microscope (SEM), transmission electron microscope (TEM), and vibrating sample magnetometer (VSM). XRD and FTIR results show that BaCoTi-M nanoparticles formed directly from γ-Fe2O3, spinel ferrite, and barium salts without the formation of α-Fe2O3 and BaFe2O4. The lattice shrinkage of BaCoTi-M nanoparticles that occurred on increasing the calcining temperature from 973 to 1173 K under holding for 2 h or on increasing the holding time in the range 0–2 h at 1173 K was discovered by analyzing the dependences of lattice parameters on the heat-treatment conditions. The shrinkage led to a relatively higher concentration of magnetic Fe3+ cations in the unit cell, and resulted in an increase of specific saturation magnetization under the corresponding conditions. Microstructural characterization shows that the evolutions of coercivity, remnant magnetization, and squareness ratio depended on the crystal growth and the reduction of structural defect as well as a decrease of grain boundary.  相似文献   

11.
In this paper we firstly demonstrate a facile approach for the rapid fabrication of α-Fe2O3 using microwave-assisted esterification. In situ -generated water leads to the forced hydrolysis of Fe3+. Microwave irradiation greatly promotes the growth of α-Fe2O3 nanoparticles compared with conventional solvothermal approach, and agitation can assure the obtainment of pure hematite phase. The akaganeite phase is preserved without stirring. The BET specific surface area reaches 83 m2/g although high concentration of FeCl3 is adopted. Our approach can assure the very rapid acquisition of hematite nanoparticles. Electrochemical studies indicate that our product can function as a candidate for high-performance sensor.  相似文献   

12.
Subsolidus equilibrium relations in a portion of the system Li2O-Fe2O3-Al2O3 in the temperature range 500° to 1400°C. have been determined near po2 = 0.21. Of particular interest in this system is the LiFe5O8-LiAl5O8 join, which shows complete solid solution above 1180°C. Below this temperature the solid solution exsolves into two spinel phases. At 600°C. approximately 15 mole % of each compound is soluble in the other. The high-temperature solid solution and the low-temperature exsolution dome extend into the ternary system from the 1:5 join. There is no appreciable crystalline solubility of LiFeO2 or of α-Fe2O3 in LiFe5O8. An attempt to confirm HFe5O8 as the correct formulation of the magnetic ferric oxide "γ-Fe2O3" was inconclusive, but in the absence of positive evidence, the retention of γ-Fe2O3 is recommended. All the metallic oxides of the Group IV elements increase the temperature of the monotropic conversion of -γ-Fe2O3 to α-Fe2O3. Silica and thoria have a greater effect on this conversion than does titania or zirconia.  相似文献   

13.
Nanocrystalline pure α-Fe2O3 powder, with an average particle size of 35 nm, has been synthesized by using an aqueous solution-based synthetic route. DC electrical resistivity of the synthesized material was measured with respect to temperature by the two-probe method from 28° to 225°C. Room temperature resistivity of the nanopowder was ∼108Ω·cm. Magnetic hysteresis measurement revealed that the synthesized α-Fe2O3 nanopowder exhibited ferromagnetic behavior at room temperature. The hysteretic features are high saturation magnetization of 5.1 emu/g, high remanence of 2.2 emu/g, and coercivity of 200.5 Oe.  相似文献   

14.
Thermal reactions in 93% Al2O3-7% MgO and 95.8% Al2O3-4.2% MgO gels seeded with α-Al2O3, MgAl2O4, α-Fe2O3, and SiO2, sols were investigated by differential thermal analysis to determine the extent of nucleation catalysis of solid-state reactions. Seeding with α-Al2O3 lowered the α-Al2O3 crystallization temperature in these xerogels by 100° to 150°C. Spinel seeds have much less effect on the γ-α transition, and α-Fe2O3 and SiO2 seeds do not affect it significantly. Isostructural seeding of gels may therefore permit lower ceramic processing temperatures.  相似文献   

15.
Iron oxide hematite particles with various shapes (platelet, polyhedron, pseudocube, and peanut-like) have been synthesized by hydrothermal treatment of a Fe(OH) x O y precursor under various conditions. The size and shape of hematite particles can be adjusted by carefully controlling the processing parameters such as holding time, temperature, and adsorption ions present in the system. The nearly monosized α-Fe2O3 platelets possess face diameters of approximately 3 μm and a thickness of 0.5 μm under a scanning electron microscope. The apparent color of the particles changes as particle size and shape varies. Munsell color notation was employed to compare the color of hematite particles with various sizes and shapes. Diffuse reflectance spectra show that a "red-shift" of 40 nm is observed in platelet, pseudocube, and peanut-like particles compared with conventional particles. The band at 850 nm for the 6A14T1 transition was split in the pseudocubic and peanut-like particles. Raman spectra of the hematite particles also reveal that the vibrational modes of α-Fe2O3 particles diminish as particle size decreases, and dependence of vibrational band intensity on frequency is also observed. The spectral profiles demonstrate significant difference as excitation radiation lines changes from blue (457 nm) to red (647 nm). Possible mechanisms responsible for the optical properties of hematite particles are postulated based on the findings of the experiments.  相似文献   

16.
Manganese ferrite and α-Fe2O3 particles were precipitated within silicate melt systems to produce very unusual magnetic properties. Assemblies of particles of both kinds behaved super-paramagnetically when the particle size was small enough. As the particle size was increased, the magnetic properties of the ferrite system increased, but those of the α-Fe2O3 system decreased; the latter is expected from Néel's theory of a net spontaneous magnetic moment created by uncompensated magnetic sublattices at very small particle sizes. Liquid-in-liquid phase separation was pronounced in the manganese ferrite-glass systems, which may have influenced the precipitation behavior. Room-temperature initial mass susceptibilities were as high as 2 × 10 −2 cgs, and specific magnetizations as high as 26 gauss/g were observed. Precipitation of α-Fe2O3 particles exhibiting super-paramagnetic behavior was possible only with very low-viscosity melts. Initial mass susceptibility values changed by as much as a factor of 30 between 296° and 77°K.  相似文献   

17.
Oxygen diffusion coefficients have been determined for polycrystalline samples of NiCr2O4 and α-Fe2O3 by exchange measurements with oxygen gas containing the stable isotope18O, using mass spectrometer analysis. Oxygen diffusion in NiCr2O4 can be represented by the equation D = 0.017 exp (-65,400/RT); oxygen diffusion in α-Fe2O3 can be represented by the equation D = 1 × 1011 exp (-146,000/RT). The large difference between D0 and activation energy for these materials suggests that different diffusion mechanisms are involved.  相似文献   

18.
Fine-particle beta sodium ferrite (β-NaFeO2), rather than α-Fe2O3, may be responsible for superparamagnetic behavior in a glass of composition (in mole fractions) 0.37Na2O-0.26Fe2O3-0.37SiO2. The 700°C isothermal section of the phase diagram of the Na2O-Fe2O3-SiO2 system is given, showing a three-phase field bounded by Na2SiO3-NaFeO2-Fe2O3; there is no evidence for the existence (at 700°C) of compounds of molar composition 6Na2O-4Fe2O3-5SiO2 or 2Na2O-Fe2O3-SiO2. The Moessbauer spectrum of β-NaFeO2 has an internal magnetic field of 487 kOe at room temperature.  相似文献   

19.
The effects of sintering temperature above 1000°C and of cooling rate on the microstructual development of pure and Zn-substituted spinel lithium ferrites are discussed. The strong dependence of microstructural features on cooling rate can be explained on the basis of the precipitation of α-Fe2O3 or the formation of a solid solution of ferrite phase with Fe3O4 occurring during sintering above 1000°C. These two phenomena are studied by detailed characterization analyses: SEM, XRD, magnetization, and ac electrical resistivity measurements.  相似文献   

20.
Addition of α-Fe2O3 seed particles to alkoxide-derived boehmite sols resulted in a 10-fold increase in isothermal rate constants for the transformation of γ- to α-Al2O3. Changes in porosity and surface area with sintering temperature showed no effect of seeding on coarsening of the transition alumina gels, but the 200-fold decrease in surface area associated with transformation to α-Al2O3 occurred ∼ 100°C lower in seeded gels compared with unseeded materials. As a result of high nucleation frequency and reduced microstructure coarsening, fully transformed seeded alumina retained specific surface areas >22 m2/g and exhibited narrow pore size distributions, permitting development of fully dense, submicrometer α-Al2O3 at ∼ 1200°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号