首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
矿山酸性废水治理技术现状及进展   总被引:7,自引:0,他引:7  
杨群  宁平  陈芳媛  赵天亮 《金属矿山》2009,39(1):131-134
矿山酸性废水(AMD)富含重金属离子,对环境危害极大。综述了国内外矿山酸性废水治理技术的研究现状,包括物理法、化学法、生物化学法等,分析了相关处理技术的特点、存在的问题及其应用前景,并探讨了矿山酸性废水的治理技术的进展和趋势。  相似文献   

2.
王帆 《现代矿业》2010,26(8):121-122
金属矿山酸性废水的形成机理比较复杂,且pH值低、酸度大、重金属离子含量高。以马鞍山向山垃圾场尾矿坝酸性废水为研究对象,通过不同中和药剂的添加试验,分析、总结了此类废水处理的一般规律,并对处理后废水pH出现返酸现象进行了研究分析,并提出了处理意见;从技术经济和环保的角度得出用电石渣处理该酸性废水最为合理的结论。  相似文献   

3.
酸性矿山废水的污染与治理技术研究   总被引:23,自引:0,他引:23  
分析了酸性矿山废水的成分、危害、来源和排放特点,经试验研究,推荐以添加缓蚀剂中和为主的几种既又实用的酸性废水治理技术,以实现废水的循环利用和无害排放。  相似文献   

4.
在矿产资源开采和利用过程中产生的酸性矿山废水(AMD)是全球矿业面临的一个严重的环境问题.酸性矿山废水具有pH值低、重金属和硫酸盐含量高等特点,给生态环境和人类健康带来了极大的危害.介绍了酸性矿山废水的形成及危害,综述了国内外酸性矿山废水处理技术的研究现状,包括物理法、化学法和生物法等.讨论了各处理技术的优缺点,总结了...  相似文献   

5.
矿山酸性废水治理HDS工艺技术研究   总被引:3,自引:0,他引:3  
HDS处理工艺是一种高效底泥循环回流技术,在矿山酸性废水治理中具有提高药剂利用率、提高污泥浓度、改善污泥沉降浓缩特性等优点,在国外矿山酸性废水治理中具有广泛的应用,在国内仅有部分试验研究。通过实验室试验以及结合研究资料对HDS处理工艺在矿山酸性废水的治理过程机理进行了研究,同时对技术研究进展及应用等方面进行了现状分析。  相似文献   

6.
矿山酸性废水治理研究现状   总被引:24,自引:1,他引:24  
本简述了矿山酸性废水的来源、特点、危害,并综述了各种矿山酸性废水治理的方法。  相似文献   

7.
刘建勋 《矿业快报》2000,(10):18-20
马钢南山铁矿酸性废水治理过程可分为三个阶段:初始阶段、攻坚阶段、突破阶段。从工艺技术角度分析其得失后,提出了技术改进措施。  相似文献   

8.
酸性矿山废水处理技术及其发展前景   总被引:15,自引:0,他引:15  
饶俊  张锦瑞  徐晖 《矿业工程》2005,3(3):47-49
叙述了酸性矿山废水的来源、分布及其危害.分析总结了改造选矿流程、中和法、硫化法和置换中和法等经济、实用的酸性矿山废水处理技术现状.并进一步阐述了酸性矿山废水处理技术的发展前景。  相似文献   

9.
矿山酸性废水治理的研究现状及发展趋势   总被引:2,自引:0,他引:2  
崔振红 《现代矿业》2009,25(10):26-28
介绍了矿山因酸性废水处理不当,造成的严重的环境污染状况。对矿山酸性废水的成因、特点、危害、应用及处理方法进行了综述。  相似文献   

10.
矿山开采及闭矿产生的酸性矿井水、固废堆场产生的酸性淋滤液对矿山生态环境造成了严重的影响,系统梳理与总结相关研究成果对进一步推动酸性矿山废水的治理具有重要意义。本文综述了阻氧覆盖、表面钝化、杀菌处理和微生物抑酸技术的方法原理与应用,分析了不同方法的优缺点和适应性。分析结果表明,抑制矿山废水酸化的方法主要包括物理化学法和微生物法;物理化学抑酸技术能够一定程度上从源头抑制AMD的产生,但存在适用条件限制、二次污染风险、材料易失效等缺点;目前微生物抑酸主要是通过铁还原菌、硫酸盐还原菌、复合型厌氧生物膜等抑酸微生物抑制AMD的产生,但大多处于研发和试验阶段。本研究基于金属硫化矿物微生物催化氧化产酸机理,提出利用“微生物间拮抗与竞争作用”筛选高效抑酸微生物,探索矿山酸性废水抑酸处理新方法。  相似文献   

11.
The Marchand passive treatment system was constructed in 2006 for a 6,000 L/min discharge from an abandoned underground bituminous coal mine located in western Pennsylvania, USA. The system consists of six serially connected ponds followed by a large constructed wetland. Treatment performance was monitored between December 2006 and 2007. The system inflow was alkaline with pH 6.2, 337 mg/L CaCO3 alkalinity, 74 mg/L Fe, 1 mg/L Mn, and <1 mg/L Al. The final discharge averaged pH 7.5, 214 mg/L CaCO3 alkalinity, and 0.8 mg/L Fe. The settling ponds removed 84% of the Fe at an average rate of 26 g Fe m−2 day−1. The constructed wetland removed residual Fe at a rate of 4 g Fe m−2 day−1. Analyses of dissolved and particulate Fe fractions indicated that Fe removal was limited in the ponds by the rate of iron oxidation and in the wetland by the rate of particulate iron settling. The treatment effectiveness of the system did not substantially degrade during cold weather or at high flows. The system cost $1.3 million (2006) or $207 (US) per L/min of average flow. Annual maintenance and sampling costs are projected at $10,000 per year. The 25-year present value cost estimate (4% discount rate) is $1.45 million or $0.018 per 1,000 L of treated flow.  相似文献   

12.
HDS工艺处理某矿山酸性废水试验研究   总被引:1,自引:0,他引:1  
通过对高密度泥浆法处理矿山酸性废水的工艺参数试验研究,结果表明HDS法可降低中和药剂使用量高达16.7%,絮凝剂的投加量也适量减少,沉淀室泥水分离的时间仅为8 min,外排中和渣固体物浓度达26.7%,出水水质达标排放。  相似文献   

13.
In the UK, the Coal Authority has more than 40 mine water treatment systems, most of which are wetland systems with settlement lagoon pretreatment. The purpose of treatment in wetlands is the oxidation of ferrous to ferric iron and the subsequent hydrolysis and precipitation of ferric hydroxide within the wetland. It is generally accepted (Hedin et al., Passive treatment of coal mine drainage, 1994, p 35; Skousen and Ziemkiewicz, Acid mine drainage control and treatment, 1996, p 362; Younger et al., Mine water: hydrology, pollution, remediation, 2002, p 442) that this process proceeds by a first-order rate law, although most systems are designed based on an areal removal rate (10 g/m2/day) developed by the U.S. Bureau of Mines (Hedin et al., Passive treatment of coal mine drainage, 1994, p 35); this design guideline inherently assumes a constant removal rate. Given the actual kinetics of iron removal in wetlands, it follows that residence time will control iron removal; given the wide range of system geometries and aspects, it is logical to ascertain the actual hydraulic residence time of wetlands and settlement lagoons and determine the effect this has on iron removal. To make a preliminary assessment of this link, hydraulic residence time of two Coal Authority wetlands (Lambley and Whittle) and two Coal Authority settlement lagoons (Acomb East, Acomb West and Whittle) were measured using bromide tracer tests. Water samples for iron analysis and flow measurements were taken during each tracer test. The Lambley wetland performs well in terms of residence time, and, as reeds become established and adsorptive processes increase, its iron removal performance (currently 58% removal) may improve, but the low influent iron concentration appears to be a significant impediment to meeting the original performance target. In contrast, the hydraulic performance of the Whittle wetland system is poor, which appears to be due to accumulation of dead plant material coupled with a high length to width ratio. However, performance in terms of iron removal is good (92% removal), which appears to be due to the higher influent iron concentration, and especially the fact that the iron enters the wetland largely in particulate form. The longer residence time of water within the Acomb lagoons (≈12 h) resulted in far more effective iron removal (72% in the east lagoon and 85% in the west lagoon) than the shorter residence time at Whittle (24% iron removal, ≈5 h residence time). Performance (in terms of iron removal) of the settlement lagoon systems appears to be far more closely related to the hydraulic residence time (albeit this conclusion must be tentative, given that only three systems have been investigated, and the Acomb system receives chemical addition). Based on this study, treatment system sizing using 100 m2 lagoon area per 1 L/s flow appears to be a more appropriate basis for design rather than an areal iron removal rate.  相似文献   

14.
我国矿产资源的不断开采,给矿区带来的不仅是能源与财富,还有环境污染。其中矿山水污染是比较严重的,文章主要介绍了我国矿山水污染的现状与特点,对水污染最严重之一的酸性矿井水进行了重点阐述,并介绍了石灰石中和法、石灰中和法和生物处理法处理酸性矿井水的原理。  相似文献   

15.
矿山酸性废水处理及源头控制技术展望   总被引:7,自引:0,他引:7  
赵玲  王荣锌  李官  陈明 《金属矿山》2009,39(7):131-135
分析了矿山酸性废水的来源,特点,产生机理及国内外处理方法。针对矿山酸性废水特点,论述了源头控制技术,最后提出利用粉煤灰覆盖废石堆和尾矿库技术,对有色金属矿山酸性废水进行源头控制,达到以废治废、减少污染物排放和缩减处理成本的目的。  相似文献   

16.
采用添加硫酸盐还原菌(SRB)与零价铁(Fe0)构建以麦饭石(MFS)为主体的可渗透性反应墙,模拟井下煤矿酸性废水(AMD)原位修复过程,比较生化强化与物化强化两种方式对处理能力的影响。结果表明,添加硫酸盐还原菌的麦饭石(SRB-MFS)和添加零价铁的麦饭石(Fe0-MFS)去除能力均强于单独MFS;SRB-MFS对SO42-的去除有明显优势,但对Mn2+的去除不及Fe0-MFS,两种强化方式对可溶性Fe2+的去除效果差别不大,出水均为弱碱性。  相似文献   

17.
通过在黄玉川煤矿地面布置抽水孔进行抽水试验,测试不同孔位的涌水量、渗透系数及影响半径,掌握奥灰水地层的富水性及渗透性特征,避免井下采煤过程中的突水事故。结果表明:奥陶系灰岩地层发育导水断裂带及陷落柱等导水通道,含水层对9号煤层开采的影响比其他煤层严重;抽水结束后,含水层水流补给抽水钻孔,24 h内液面恢复至抽水之前的水位深度;地面钻孔抽水试验测试的涌水量在0.018~2.412 m3/h之间,平均单位涌水量为0.036 L/(s·m),属于弱含水性的含水层;渗透系数在平均值为0.002 4 m/d,属于弱透水性的含水层。  相似文献   

18.
某铁矿尾矿库酸性废水处理试验研究   总被引:1,自引:2,他引:1  
介绍了使用两段中和法处理矿山酸性废水,即首先用矿物或废渣作中和剂将废水的pH值提高到4.0左右,再用石灰乳进行中和。在实验室研究的基础上,对某铁矿尾矿库酸性废水采用两段中和法进行工程试验。试验结果表明,滤料高度为60 cm,用5%的石灰乳作中和剂,石灰用量为0.5~0.8 kg/m3,絮凝剂投加量为2×10-6,出水pH值达到6~8,出水水质指标达到国家排放标准。两段中和法比一段法节省石灰用量,节约处理费用。  相似文献   

19.
奥灰水水害是矿井建设与生产中的自然水害之一。如果防治不到位而发生突水事故,不仅会影响正常生产,还会造成财产损失和人员伤亡,危害十分严重。本文分析了鹤壁矿区奥灰水水害原因,总结了其治理水害的主要经验,并提出了针对性的防治措施。  相似文献   

20.
就铀矿山固体废物的特殊性,讨论了硫化矿物形成酸性废水成因和影响因素,阐述了重金属在土壤中的形态以及对环境的影响,提出了污染治理的方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号