共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
金属矿山酸性废水的形成机理比较复杂,且pH值低、酸度大、重金属离子含量高。以马鞍山向山垃圾场尾矿坝酸性废水为研究对象,通过不同中和药剂的添加试验,分析、总结了此类废水处理的一般规律,并对处理后废水pH出现返酸现象进行了研究分析,并提出了处理意见;从技术经济和环保的角度得出用电石渣处理该酸性废水最为合理的结论。 相似文献
3.
酸性矿山废水的污染与治理技术研究 总被引:23,自引:0,他引:23
分析了酸性矿山废水的成分、危害、来源和排放特点,经试验研究,推荐以添加缓蚀剂中和为主的几种既又实用的酸性废水治理技术,以实现废水的循环利用和无害排放。 相似文献
4.
5.
6.
7.
马钢南山铁矿酸性废水治理过程可分为三个阶段:初始阶段、攻坚阶段、突破阶段。从工艺技术角度分析其得失后,提出了技术改进措施。 相似文献
8.
9.
10.
矿山开采及闭矿产生的酸性矿井水、固废堆场产生的酸性淋滤液对矿山生态环境造成了严重的影响,系统梳理与总结相关研究成果对进一步推动酸性矿山废水的治理具有重要意义。本文综述了阻氧覆盖、表面钝化、杀菌处理和微生物抑酸技术的方法原理与应用,分析了不同方法的优缺点和适应性。分析结果表明,抑制矿山废水酸化的方法主要包括物理化学法和微生物法;物理化学抑酸技术能够一定程度上从源头抑制AMD的产生,但存在适用条件限制、二次污染风险、材料易失效等缺点;目前微生物抑酸主要是通过铁还原菌、硫酸盐还原菌、复合型厌氧生物膜等抑酸微生物抑制AMD的产生,但大多处于研发和试验阶段。本研究基于金属硫化矿物微生物催化氧化产酸机理,提出利用“微生物间拮抗与竞争作用”筛选高效抑酸微生物,探索矿山酸性废水抑酸处理新方法。 相似文献
11.
Robert S. Hedin 《Mine Water and the Environment》2008,27(4):200-209
The Marchand passive treatment system was constructed in 2006 for a 6,000 L/min discharge from an abandoned underground bituminous coal mine located in western Pennsylvania, USA. The system consists of six serially connected ponds followed by a large constructed wetland. Treatment performance was monitored between December 2006 and 2007. The system inflow was alkaline with pH 6.2, 337 mg/L CaCO3 alkalinity, 74 mg/L Fe, 1 mg/L Mn, and <1 mg/L Al. The final discharge averaged pH 7.5, 214 mg/L CaCO3 alkalinity, and 0.8 mg/L Fe. The settling ponds removed 84% of the Fe at an average rate of 26 g Fe m−2 day−1. The constructed wetland removed residual Fe at a rate of 4 g Fe m−2 day−1. Analyses of dissolved and particulate Fe fractions indicated that Fe removal was limited in the ponds by the rate of iron oxidation and in the wetland by the rate of particulate iron settling. The treatment effectiveness of the system did not substantially degrade during cold weather or at high flows. The system cost $1.3 million (2006) or $207 (US) per L/min of average flow. Annual maintenance and sampling costs are projected at $10,000 per year. The 25-year present value cost estimate (4% discount rate) is $1.45 million or $0.018 per 1,000 L of treated flow. 相似文献
12.
13.
Determination of Hydraulic Residence Times in Several UK Mine Water Treatment Systems and their Relationship to Iron Removal 总被引:1,自引:1,他引:0
In the UK, the Coal Authority has more than 40 mine water treatment systems, most of which are wetland systems with settlement lagoon pretreatment. The purpose of treatment in wetlands is the oxidation of ferrous to ferric iron and the subsequent hydrolysis and precipitation of ferric hydroxide within the wetland. It is generally accepted (Hedin et al., Passive treatment of coal mine drainage, 1994, p 35; Skousen and Ziemkiewicz, Acid mine drainage control and treatment, 1996, p 362; Younger et al., Mine water: hydrology, pollution, remediation, 2002, p 442) that this process proceeds by a first-order rate law, although most systems are designed based on an areal removal rate (10 g/m2/day) developed by the U.S. Bureau of Mines (Hedin et al., Passive treatment of coal mine drainage, 1994, p 35); this design guideline inherently assumes a constant removal rate. Given the actual kinetics of iron removal in wetlands, it follows that residence time will control iron removal; given the wide range of system geometries and aspects, it is logical to ascertain the actual hydraulic residence time of wetlands and settlement lagoons and determine the effect this has on iron removal. To make a preliminary assessment of this link, hydraulic residence time of two Coal Authority wetlands (Lambley and Whittle) and two Coal Authority settlement lagoons (Acomb East, Acomb West and Whittle) were measured using bromide tracer tests. Water samples for iron analysis and flow measurements were taken during each tracer test. The Lambley wetland performs well in terms of residence time, and, as reeds become established and adsorptive processes increase, its iron removal performance (currently 58% removal) may improve, but the low influent iron concentration appears to be a significant impediment to meeting the original performance target. In contrast, the hydraulic performance of the Whittle wetland system is poor, which appears to be due to accumulation of dead plant material coupled with a high length to width ratio. However, performance in terms of iron removal is good (92% removal), which appears to be due to the higher influent iron concentration, and especially the fact that the iron enters the wetland largely in particulate form. The longer residence time of water within the Acomb lagoons (≈12 h) resulted in far more effective iron removal (72% in the east lagoon and 85% in the west lagoon) than the shorter residence time at Whittle (24% iron removal, ≈5 h residence time). Performance (in terms of iron removal) of the settlement lagoon systems appears to be far more closely related to the hydraulic residence time (albeit this conclusion must be tentative, given that only three systems have been investigated, and the Acomb system receives chemical addition). Based on this study, treatment system sizing using 100 m2 lagoon area per 1 L/s flow appears to be a more appropriate basis for design rather than an areal iron removal rate. 相似文献
14.
15.
16.
17.
通过在黄玉川煤矿地面布置抽水孔进行抽水试验,测试不同孔位的涌水量、渗透系数及影响半径,掌握奥灰水地层的富水性及渗透性特征,避免井下采煤过程中的突水事故。结果表明:奥陶系灰岩地层发育导水断裂带及陷落柱等导水通道,含水层对9号煤层开采的影响比其他煤层严重;抽水结束后,含水层水流补给抽水钻孔,24 h内液面恢复至抽水之前的水位深度;地面钻孔抽水试验测试的涌水量在0.018~2.412 m3/h之间,平均单位涌水量为0.036 L/(s·m),属于弱含水性的含水层;渗透系数在平均值为0.002 4 m/d,属于弱透水性的含水层。 相似文献
18.
19.
20.
就铀矿山固体废物的特殊性,讨论了硫化矿物形成酸性废水成因和影响因素,阐述了重金属在土壤中的形态以及对环境的影响,提出了污染治理的方法. 相似文献