首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Tribology International》2012,45(12):1852-1863
A theoretical study concerning the slot-entry hybrid journal bearing lubricated with micropolar lubricants is presented. The modified Reynolds equation for micropolar lubricant is solved using finite element method along with equation of lubricant flow through slot-entry restrictors as a constraint together with appropriate boundary conditions. It has been observed that a slot-entry hybrid journal bearing operating with micropolar lubricant shows an increase in the value of minimum fluid film thickness and a reduction in the value of coefficient of friction as compared to a corresponding similar slot-entry hybrid journal bearing operating with Newtonian lubricant.  相似文献   

2.
The objective of the present paper is to study analytically the performance of four-pocket orifice compensated hydrostatic/hybrid journal bearing system of various geometric shapes of recess operating with micropolar lubricant. The modified Reynolds equation for micropolar lubricant is solved using FEM and the Newton-Raphson method along with appropriate boundary conditions. The results suggest that the influence of micropolar effect of lubricant on bearing performance is predominantly affected by the geometric shape of recess and restrictor design parameter. Therefore, the bearing designer must judiciously choose an appropriate geometric shape of recess in order to get an overall enhanced bearing performance.  相似文献   

3.
This paper presents theoretical investigations of the thermal and rheological effects of lubricant on the performance of symmetric and asymmetric slot-entry hybrid journal bearing system. FEM has been used to solve the Reynolds equation governing flow of lubricant in bearing clearance space along with restrictor flow equation, energy equation and conduction equation using suitable iterative technique. The thermohydrostatic (THS) rheological performance of slot-entry hybrid journal bearings are studied for small temperature variation of the lubricant. The computed results reveal that variation of viscosity due to temperature rise and non-Newtonian behavior of lubricant affects the bearing performance quite significantly.  相似文献   

4.
This article presents the analysis of a two-lobe hole-entry hybrid journal bearing operating with micropolar lubrication. The modified Reynolds equation governing the laminar flow of isoviscous, incompressible micropolar lubricant in the clearance space of a journal bearing system has been solved using a finite element model incorporating appropriate boundary conditions. A comparative analysis between circular and noncircular two-lobe hybrid journal bearings with capillary restrictor under Newtonian and micropolar lubrication has been presented. It is concluded that bearing performance characteristics are significantly influenced by micropolar lubrication.  相似文献   

5.
A numerical study concerning the performance of non-recessed hole-entry hybrid journal bearing lubricated with micropolar lubricants is presented. The modified Reynolds equation governing the flow of micropolar lubricant in the bearing clearance space is solved using Finite Element Method along with appropriate boundary conditions. Dependence of bearing performance characteristics upon the bearing operating, geometric and micropolar parameters, over a range, has been analyzed. The numerically simulated results are pointed to the choice of restrictor design parameter, for the chosen combination of micropolar parameters of lubricant, in order to obtain optimum values of fluid film stiffness coefficients.  相似文献   

6.
In this paper the effect of deformation of the bearing liner on the static and dynamic performance characteristics of an elliptical (two-lobe) journal bearing operating with micropolar lubricant is presented. Lubricating oil containing additives and contaminants is modeled as micropolar fluid. A generalized form of Reynold's equation is derived from the fluid flow and diffusion equations. Finite element technique is used to solve the modified Reynold's equation governing the flow of micropolar lubricant in the clearance space of the journal bearing and the three-dimensional elasticity equations governing the displacement field in the bearing shell. The static and dynamic characteristics of the bearing are computed for a wide range of deformation coefficient which takes into accountant the flexibility of bearing liner by treating operating lubricant as (i) Newtonian and (ii) micropolar. The computed results show that the increasing volume concentration of additives and mass transfer of additives produce significant changes on the performance characteristics.  相似文献   

7.
A theoretical study concerning the static and dynamic performance of hydrostatic/hybrid journal bearing compensated by slot restrictor has been presented using the finite element method (FEM). Results have been presented for a double row symmetric as well as asymmetric configurations for different values of slot width ratios (SWR) and external load ( ). In order to have a better understanding of their performance vis-à-vis other non-recessed bearing configurations, the performance characteristics of slot-entry journal bearings have been compared with that of similar hole-entry compensated journal bearings using capillary, orifice and constant flow valve restrictors for the same bearing geometric and operating parameters. The comparative study indicates that asymmetric slot-entry journal bearings provide an improved stability threshold speed margin compared with asymmetric hole entry journal bearings compensated by capillary, orifice and constant flow valve restrictors.  相似文献   

8.
Kh. Zaheeruddin 《Wear》1981,71(2):139-152
The generalized Reynolds equation governing the pressure distribution for a micropolar lubricant in a dynamically loaded porous journal bearing is derived and applied to one-dimensional squeeze film journal bearings operating under a cyclic load. The analysis indicates how the microstructure in the lubricant, the permeability of the bearing material and the bearing wall thickness influence the operating eccentricity ratio.  相似文献   

9.
This paper presents the analytical study of the effect of the bearing shell flexibility on the performance of multirecess hydrostatic journal bearing system operating with micropolar lubricant. The modified Reynolds equation for the flow of micropolar lubricant through constant flow valve‐compensated hydrostatic journal bearing has been solved by finite element technique based on Galerkins method, and the resulting elastic deformation in the bearing shell due to fluid‐film pressure has been determined iteratively, in which the deformation coefficient accounts for the bearing shell flexibility. The computed results suggest that the influence of the micropolar effect on bearing performance characteristics is significantly affected by the bearing shell flexibility. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Based upon the microcontinuum theory, the present paper is to theoretically study the pure squeeze-film behavior of a finite partial journal bearing with non-Newtonian couple-stress lubricants operating under a time-dependent cyclic load. To take into account the couple stress effects resulting from the lubricant blended with various additives, the modified Reynolds equation governing the film pressure is obtained from Stokes equations of motion. The film pressure is numerically solved by using the Conjugate Gradient Method. Bearing characteristics are then calculated from the nonlinear motion equation of the journal. According to the results obtained, the effects of couple stresses result in a decrease in the value of eccentricity of the journal center. The finite partial bearing with a couple stress fluid as the lubricant yields an increase in the minimum permissible clearance and provides a longer time to prevent the journal-bearing contact.  相似文献   

11.
Abstract

In recent years, extensive use of smart lubricants has been made in order to control the tribological performance of fluid film bearings. The grooved surfaces of the journal bearing greatly influence the performance of bearings. In the present work, various geometric shapes of herringbone grooves (rectangular, triangular, and parabolic) with groove angles (30° and 60°) have been considered to numerically simulate the performance of slot-entry bearings. The work reported in this article deals with the numerical simulation of magnetorheological (MR) fluid–lubricated slot-entry herringbone-grooved hybrid journal bearings. Dave equation, a constitutive relation of the Bingham model, was employed to simulate the flow behavior of MR fluid. Using the finite element method (FEM), the governing Reynolds equation for a hybrid slot-entry bearing model was solved. The result shows that the use of a herringbone-grooved surface and application of MR fluid in a slot-entry bearing offers better stability and higher fluid film stiffness and minimizes frictional torque.  相似文献   

12.
The lubricating effectiveness of micropolar fluids in a dynamically loaded journal bearing is studied. On the basis of the theory of micropolar fluids, the modified Reynolds equation for dynamic loads is derived. Results from the numerical analysis indicated that the effects of micropolar fluids on the performance of a dynamically loaded journal bearing depend on the size of material characteristic length and the coupling number. It is shown, compared with Newtonian lubricants, that under a dynamic loading the micropolar lubricants produce an obvious increase in the oil film pressure and oil film thickness, but a decrease in the side leakage flow. It is also shown that the friction coefficient for a dynamically loaded journal bearing with micropolar fluids is in general higher than that of Newtonian fluids, which is not the same as the results for a steadily loaded journal bearing. Furthermore, a parametric study of flow and friction for different mass parameters keeping micropolar parameters fixed is undertaken. It is indicated that, with the increase of the mass parameters, the crank angles corresponding to the maximum flow are changed and the maximum friction coefficients are obviously decreased either for the Newtonian fluids or for the micropolar fluids.  相似文献   

13.
A linear stability analysis of hydrodynamic journal bearings is presented, including the effects of elastic distortion of the liner and micropolar lubrication. Hydrodynamic equations of the lubricant and equations of motion of the journal are solved simultaneously with the deformation equations for the bearing surface to predict the fluid film pressure distributions theoretically. The components of stiffness and damping coefficients, critical mass parameter, and whirl ratio, which reflect the dynamic characteristic of the journal bearing, are calculated for varying eccentricity ratio taking into account the flexibility of the liner and the micropolar properties of the lubricant. The results presented show that stability decreases with an increase in the value of the elasticity parameter of the bearing liner and micropolar fluids exhibit better stability in comparison to Newtonian fluids.  相似文献   

14.
The present paper deals with the theoretical investigation of the influence of dimple geometry on fully textured hybrid thrust pad bearing and operating with non-Newtonian lubricant. The modified Reynolds equation which governs the flow of non-Newtonian lubricant in the clearance space has been solved using Finite Element Method. The simulated results indicate that the values of load carrying capacity, frictional power loss, maximum pressure and fluid film stiffness coefficient are significantly affected by the behavior of lubricant. The results presented in the study are expected to aid in determining the optimum value of dimple diameter and depth for the optimum bearing performance.  相似文献   

15.
ABSTRACT

The lubricant properties have a significant influence on the static and dynamic performance characteristics of journal bearing such as load-carrying capability, minimum fluid film thickness, maximum pressure, lubricant flow rate, damping coefficients, stiffness coefficients, etc. The present document reviews the behaviour of various lubricants such as power-law lubricants, couple stress lubricants, micropolar lubricants, ionic liquid lubricants and space lubricants. The influence of these lubricants on the performance of hydrostatic, hydrodynamic and hybrid journal bearings is discussed. An effort is made to develop the understanding to choose the suitable lubricant for journal bearings for different journal bearing configurations. Journal bearings operated with non-Newtonian lubricants have shown better performance compared to Newtonian lubricants. Ionic liquid lubricants have shown high potential in vacuum applications and extreme temperature environment such as in bearings of spacecraft moving mechanical assemblies.  相似文献   

16.
Modern high-performance machines require bearings to operate under stringent conditions. For bearings operating under heavy loads, the bearing deformations can no longer be neglected as they are comparable to the order of magnitude of the fluid film thickness. This paper describes the performance of slot-entry hydrostatic/hybrid journal bearings by considering bearing shell flexibility in the analysis. The relevant governing equations have been solved by the finite element method. Slot-entry journal bearings of two separate configurations have been studied over a wide range of bearing operating and geometric parameters. Elastic effects are found to significantly affect the static and dynamic performance characteristics of the bearing studied. The study indicates that, for given operating conditions, to get optimum performance of a bearing proper selection of the bearing flexibility parameter ( ), the concentric design pressure ratio ( ) and the type of bearing configuration (symmetric/asymmetric) are essential.  相似文献   

17.
For bearings operating under heavy loads, the elastic deformation of bearing surface induced by fluid film pressures can no longer be neglected as it is comparable to the order of magnitude of fluid film thickness. In the present work a theoretical study describing comparative performance of non-recessed hybrid journal bearing using different flow control devices has been carried out by considering bearing shell flexibility into the analysis. The relevant governing equations have been solved using finite element method. The comparative performance of non-recessed hybrid journal bearings of two separate configurations have been studied for various values of bearing flexibility parameter (([Cbar]d)). The results have been presented for hole-entry type journal bearings compensated by capillary, orifice and constant flow valve restrictors and for a slot-entry type journal bearing, for the same set of values of operating and geometric parameters. The computed results indicates that in order to get an improved performance of non-recessed journal bearing, a proper selection of bearing flexibility parameter (([Cbar]d)) along with type of flow control device (i.e., capillary, orifice, constant flow valve, slot etc.) and type of bearing configuration (symmetric/asymmetric) are essential.  相似文献   

18.
The paper reports a comparative study for the performance of a multirecess 2-lobe hybrid worn journal bearing system compensated with different flow control devices, such as capillary, constant flow valve, orifice and membrane restrictors. The Reynolds equation governing the flow of lubricant in the clearance space of a 2-lobe multirecess worn hybrid journal bearing system together with restrictor flow equation has been solved using Finite Element Method. The proposed results helps to the proper selection of the type of compensating device and the value of offset factor which provides an improved and accurate bearing performance.  相似文献   

19.
There is a spectrum of pressure-fed journal bearings ranging from the purely hydrostatic bearing characteristics, ie zero speed operation, to the purely hydrodynamic bearing characteristics which depend completely on speed. Between these two extremes, hybrid bearing characteristics rely on mixed modes of external pressurisation and speed-dependent pressurisation. Large high speed hydrodynamic bearings require the lubricant to be pumped under pressure for temperature control. It is therefore attractive to use this external source of pressure to enhance the start-up performance by reducing wear and improving stability. Hybrid bearings offer the possibility of improving on both the zero-speed characteristics of hydrostatic bearings and on the whole range of speed characteristics of hydrodynamic bearings. It is concluded that hole-entry bearings may be particularly effective when compared with other bearing configurations for good load support and low energy consumption, when used in any of the four modes of operation including: zero-speed hydrostatic mode; high-speed hydrodynamic mode; zero and high-speed hybrid mode; and jacking mode where areas are pressurised for start-up. A modification to the procedure for solving the Reynolds equation is introduced to cope with cavitated regions. The technique presented for solving the bearing pressures and cavitation boundaries is efficient and has relevance to any type of liquid film bearing  相似文献   

20.
A theoretical model is developed to study the performance of a hole-entry hybrid journal bearing system by considering variation of viscosity due to temperature rise of the lubricant in the analysis. The deformation of bush due to fluid-film pressure and temperature has been considered to establish the modified fluid-film profile. The journal temperature is computed on the basis of the fluid-film temperature. The relevant governing equations have been solved using the finite element method and a suitable iterative technique. The thermoelastohydrostatic performance of an orifice compensated symmetric and asymmetric hole-entry hybrid journal bearing configurations has been studied for the chosen bearing operating and geometric parameters. The results presented in the study indicate that the variation of viscosity due to temperature rise of the lubricant fluid-film have a quite appreciable influence on the static and dynamic performance of a hole-entry hybrid journal bearing system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号