首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
采用液压高精度材料试验机考察了平面一球面接触的AZ91D镁合金摩擦副的微动磨损行为,分析了位移幅值、法向载荷和频率等参数对摩擦因数和磨损体积的影响,考察了不同实验条件下的磨斑形貌,并探讨了其磨损机理。结果表明:AZ91D镁合金的微动区域可分为部分滑移区、混合区和滑移区3个区域,粘着磨损、疲劳磨损和磨粒磨损分别是3个区域的主要磨损机制;磨损体积随着位移幅值和法向载荷的增加而增大,但却随着频率的增大而减小。在微动部分滑移区和混合区,摩擦因数随着位移增大迅速增加;在微动滑移区,摩擦因数随法向载荷的增大而减小,而位移幅值和频率对摩擦因数的影响较小。  相似文献   

2.
The fretting test was carried out using an SRV IV fretting test rig in order to investigate the fretting wear behavior and mechanism in Inconel 600 alloy at room temperature. The materials were rolled to different reductions before the test. The effect of cold rolling on the friction coefficient and wear volume was subsequently investigated. The surface and cross-sectional morphologies of the wear scar were studied by scanning electron microscopy (SEM), laser scanning confocal microscopy (LSCM), and electron back-scattering diffraction (EBSD). The results indicated that the cold rolling had a different effect on wear behavior in different slip regimes. In the stick regime, cold rolling strongly decreased the wear volume, although it did not affect the friction coefficient. The 25% rolled specimen had the minimum wear volume. The mechanisms of as-received and 50% rolled specimens were delamination and oxidation wear, whereas for the 25% rolled specimen, cracking was the main wear mechanism. In the gross slip regime, cold rolling had little effect on the friction coefficient or wear volume. The fretting wear process gave rise to a decrease in the Σ3 grain boundary, an increase in local misorientation, and a change in the crystal orientation.  相似文献   

3.
Mo离子注入提高TC4合金微动磨损抗力的研究   总被引:1,自引:0,他引:1  
对TC4合金进行了Mo离子注入表面改性处理,利用摩擦磨损试验机进行了点接触微动磨损试验,借助读数显微镜和表面粗糙度仪测量出有关参数,计算出试样的微动磨损体积。结果表明,Mo离子注入使试样表面硬度提高,微动磨损体积明显降低。在微动磨损初期,Mo离子注入具有较好的减摩效果。Mo离子注入带来的表面强化效应是基体合金的微动磨损抗力得以提高的主要原因。  相似文献   

4.
在切向微动磨损试验机上对4种核电用包壳材料(Zr合金、Zr/Cr涂层、FeCrAl和ODS-FeCrAl)进行切向微动磨损试验,考察不同包壳材料的微动磨损特性.研究结果表明:不同包壳材料的摩擦因数、耗散能曲线和形变有显著差异;4种包壳材料在切向微动过程中均处于部分滑移区.通过分析磨痕微观形貌和磨痕轮廓,发现ODS-Fe...  相似文献   

5.
Y.S. Zhang  Z. Han  K. Lu 《Wear》2008,265(3-4):396-401
Unlubricated fretting tests were performed with a nanocrystalline surface layer of a 99.99 wt.% copper fabricated by means of surface mechanical attrition treatment (SMAT), in comparison with a coarse-grained (CG) copper. The measured friction and wear data show that the fretting wear resistance is markedly enhanced with the nanocrystalline surface layer relative to the CG counterpart. The friction coefficient and wear volume of the SMAT Cu are lower than that of the CG Cu. For both samples, the friction coefficients and wear volumes increase with an increasing applied load and fretting frequency. A rapid increase of the friction coefficient and wear volume under an applied load above a critical value (30 N for the SMAT Cu and 20 N for the CG Cu) is noticed, corresponding to the formation of a continuous oxide layer between two contact surfaces. Also two sharp increases of the friction coefficient and wear volume at fretting frequencies of 50 Hz and 175 Hz were observed for the SMAT and the CG Cu. The former is correlated with the formation of a continuous oxide layer, while the latter corresponds to wearing away of the oxide layer.  相似文献   

6.
Nitrogen ion implantation was performed on biomedical titanium alloys by using of the PBII technology to improve the surface mechanical properties for the application of artificial joints. The titanium nitride phase was characterized with X-ray photoelectron spectroscopy (XPS). The nanohardness of the titanium alloys and implanted samples were measured by using of in-situ nano-mechanical testing system (TriboIndenter). Then, the fretting wear of nitrogen ion implanted titanium alloys was done on the universal multifunctional tester (UMT) with ball-on-flat fretting style in bovine serum lubrication. The fretting wear mechanism was investigated with scanning electron microscopy (SEM) and 3D surface profiler. The XPS analysis results indicate that nitrogen diffuses into the titanium alloy and forms a hard TiN layer on the Ti6Al4V alloys. The nanohardness increases from 6.40 to 7.7 GPa at the normal load of 2 mN, which reveals that nitrogen ion implantation is an effective way to enhance the surface hardness of Ti6Al4V. The coefficients of friction for Ti6Al4V alloy in bovine serum are obviously lower than that in dry friction, but the coefficients of friction for nitrogen ion implanted Ti6Al4V alloy in bovine serum are higher than that in dry friction. Fatigue wear controls the fretting failure mechanism of nitrogen ion implanted Ti6Al4V alloy fretting in bovine serum. The testing results in this paper prove that nitrogen ion implantation can effectively increase the fretting wear resistance for Ti6Al4V alloy in dry friction, and has a considerable improvement for Ti6Al4V alloy in bovine serum lubrication.  相似文献   

7.
Fretting wear of carburized titanium alloys was investigated on the universal multifunctional tester (UMT) with the ball-on-flat fretting style under bovine serum lubrication. The tangential load and friction coefficient during the fretting process were analyzed, and the evolution of fretting log during the fretting process was investigated to understand the wear mechanism of the titanium alloy and carburized titanium alloy. Furthermore, the wear scar was examined using a SEM and three-dimension surface profiler. It was found that the friction coefficient of the titanium alloy increased faster than that of carburized titanium alloy in the first stage under serum lubrication, and then remained steady with a similar value in the second stage. The Ft-D curve indicated that there was wear mechanism transition from gross slip to mixed stick and slip. Finally, it was observed that there was a slight damage of the titanium alloy and carburized titanium alloy showed excellent performance during the fretting wear process under serum lubrication. All of the results suggested that carburized titanium alloy was a potential candidate for the stem material in artificial joints.  相似文献   

8.
TiAlZr合金微动磨损性能研究   总被引:1,自引:0,他引:1  
采用高精度液压式微动磨损试验机研究了TiA lZr合金在不同微动运行区域的微动磨损行为,建立了其运行工况微动图。试验结果表明:滑移区、混合区和部分滑移区的摩擦因数随循环次数变化呈现不同的规律,其中部分滑移区摩擦因数较低,磨损体积随着位移幅值的增大而增大;滑移区、混合区磨损体积随着法向载荷的增加而增大,而部分滑移区磨损体积随着法向载荷的增加而减小;滑移区磨屑堆积于中心区域,磨损以磨粒磨损和剥层机制为主;混合区磨损机制主要表现为粘着磨损与磨粒磨损并存;部分滑移区磨损轻微。  相似文献   

9.
The influence of oil lubrication on the fretting wear behaviors of 304 stainless steel flat specimens under different fretting strokes and normal loads has been investigated. The results proved that fretting regimes and fretting wear behaviors of 304 stainless steels were closely related to the fretting conditions. In general, the increase in normal load could increase wear damage during sliding wear. However, according to the results, a significant reduction in wear volume and increase in friction coefficient was observed when the normal load was increased to critical values of 40 and 50 N at a fretting stroke of 50 μm due to the transformation of the fretting regime from a gross slip regime to partial slip regime. Only when the fretting stroke further increased to a higher value of 70 μm at 50 N, fretting could enter the gross slip regime. There was low wear volume and a high friction coefficient when fretting was in the partial slip regime, because oil penetration was poor. The wear mechanisms were fatigue damage and plastic deformation. There was high wear volume and low friction coefficient when fretting was in the gross slip regime, because the oil could penetrate into the contact surfaces. Unlike the wear mechanisms in the partial slip regime, fretting damage of 304 stainless steels was mainly caused by abrasive wear in the gross slip regime.  相似文献   

10.
This paper describes fretting wear behaviour of low friction CoCrAlY-MoS2 coatings on titanium alloy substrates in terms of dissipated energy and friction coefficient. Experimental characterisation was achieved by measuring the friction coefficient vs fretting cycles, or slid distance. Test results were analysed using exponential evolution functions for fretting damage. Dissipated energy was derived, and predicted and measured values compared. Quantitative evaluation of the fretting damage was performed by measuring substrate area emerged. Results show that the friction coefficient evolution rate of CoCrAlY-MoS2 coating correlates well with the damaged area fraction and the accumulated dissipated energy.  相似文献   

11.
在微动磨损试验机上考察了含有硫化铜纳米粒子脲基脂的微动磨损性能。结果表明:硫化铜纳米粒子能显著降低微动磨损体积,随着纳米粒子含量增加,微动磨损量降低;在微动磨损后期纳米粒子的存在还能降低摩擦因数。低负荷下,润滑脂中硫化铜纳米粒子有利于降低微动磨损量;但在高负荷条件下,磨损量迅速增大,说明高负荷下微动磨损方式发生了变化。XPS分析表明,微动磨斑表面膜含有Cu、FeS等物质,说明硫化铜纳米粒子能显著降低微动磨损的原因在于纳米粒子化学性质非常活泼,在微动过程中容易与摩擦表面发生化学反应,形成具有保护性的沉积物膜和化学反应膜。  相似文献   

12.
Fretting wear behavior of AZ91D and AM60B magnesium alloys   总被引:2,自引:0,他引:2  
Weijiu Huang  Bin Hou  Youxia Pang  Zhongrong Zhou 《Wear》2006,260(11-12):1173-1178
The fretting wear behavior of the AZ91D and AM60B magnesium alloys are investigated using a reciprocating fretting wear machine under dry conditions with different numbers of cycles, different normal loads, slip amplitudes and frequencies. The worn surfaces and wear debris were examined using scanning electron microscopy and optical microscopy in order to understand the predominant wear mechanisms of two magnesium alloys. The results indicate that the AZ91D alloy displays a lower friction coefficient and lower wear quantity than the AM60B alloy. The AZ91D shows a higher capability than AM60B in resisting crack nucleation and propagation. Both AZ91D and AM60B show similar friction and wear characteristics. The wear quantity increases with increasing normal load, but decreases with increasing frequency. The friction coefficient also decreases as the normal load is increased. Fretting frequency had little effect on the friction coefficient. In a long term, the fatigue wear and abrasive wear were the predominant wear mechanisms for AM60B and delamination wear, adhesive wear and abrasive wear for AZ91D.  相似文献   

13.
Fretting fatigue behavior of a titanium alloy, Ti–6Al–4V, in contact with two pad materials having quite differing values of hardness and elastic modulus (aluminum alloy 2024 and Inconel 718) using “cylinder-on-flat” configuration was investigated at different applied stress levels and contact forces. Applied contact forces for both pad materials were selected to provide two Hertzian peak pressures of 292 and 441 MPa. Finite element analyses of all tests were also conducted which showed that an increase in contact force resulted in a smaller relative slip amplitude and a larger width of stick zone. These two factors, along with the lower coefficient of friction during fretting, resulted in less fretting damage on the contact surface of specimen subjected to higher contact force relative to that at lower contact force regardless of the hardness difference of mating materials. Also, an increase in hardness resulted in greater fretting damage on the contact surface of specimens only at higher contact force. Further, the fretting fatigue life decreased with an increase of applied contact force at higher applied effective stress, while it increased at lower applied effective stress with both pad materials. These observations suggest that there is complex interaction among hardness difference between mating surfaces, relative slip amplitude, and stress state in the contact region during fretting fatigue of dissimilar materials.  相似文献   

14.
In many industrial applications where fretting damage is observed in the contact (e.g. rotor/blade, electrical contacts, assembly joint, axe/wheel, clutch) the external loadings or geometry design cannot be changed. Therefore, the surface preparation and finishing process become essential to control and reduce the damage caused by fretting. In this paper, the authors present the experimental study of the initial surface roughness and machining process influence on fretting conditions in both partial and full sliding regimes. Surfaces prepared by milling and smooth abrasive polishing processes have been analysed. The influence of roughness on sliding behaviour and analysis of friction have been reported. Also, the contact pressure influence and qualitative analysis of fretting wear scar have been presented.  相似文献   

15.
Abstract

The paper presents the results of tribological and nanoscale research on model friction couples intended for hip joint prostheses. The tribological tests were performed by means of reciprocating pin on plate testing machine. The investigated friction pairs contained plates rubbing against polymer pins. The test plates were made from seven kinds of ceramics containing different concentrations of ZrO2 and Al2O3, and two kinds of Co–Cr alloy. The test pins were made from UHMWPE. Tribological tests were performed in conditions of Ringer solution circulation. On the basis of friction force measurements, for each investigated friction couple, the average coefficient of friction was calculated. On the basis of total wear measurements, for each investigated couple, the wear intensity was calculated. Before and after every test, the plates and pins were analysed by means of atomic force microscopy. The difference in plate surface roughness was determined by the results of the atomic force microscopy analyses.

It was stated, that in the case of investigated friction joints, working under reciprocating motion, the wear and friction coefficient correlates with the surface roughness of plate specimens. For the plates with higher surface roughness, the lower friction coefficient and also lower UHMWPE pin wear intensity were observed. The friction coefficient and wear intensity were increasing with decreasing surface roughness. The correlation is confirmed by the differences in material transfer process. Considering investigated friction couples, the pin polymer material is smeared on the ceramic plates with the highest surface roughness creating a thin polymer film. In the case of ceramic surfaces with the lowest surface roughness, the strong adhesive bounds are created and some large particles of polymer are transferred to ceramic surface.  相似文献   

16.
格莱圈由聚四氟乙烯(PTFE)矩形滑环和丁腈橡胶(NBR)O形圈组成。为了研究不同因素对于格莱圈密封材料摩擦磨损性能的影响,利用UMT-3多功能摩擦磨损试验机,通过改变往复频率、粗糙度、润滑状态研究格莱圈材料与45钢配副时的摩擦磨损性能,利用SEM对试块试验前后表面形貌进行观测,并对摩擦磨损机制进行分析。试验结果表明:在干摩擦和滴油润滑条件下PTFE材料相比NBR材料具有更为优异的摩擦磨损性能;NBR材料表面粗糙度过高或过低都会导致摩擦因数升高,表面粗糙度对具有自润滑性能的PTFE材料的摩擦因数影响不大;高往复频率会使NBR材料摩擦因数降低,过高或过低的往复频率都会使PTFE材料摩擦因数降低;NBR材料的磨损形式以磨粒磨损和黏着磨损为主,PTFE材料以黏着磨损和疲劳磨损为主。  相似文献   

17.
为研究牙科支架合金的微动磨损性能,采用PLINT高精度液压伺服式微动磨损试验机,在法向载荷50N、频率2Hz、位移幅值3-30μm,在大气和人工唾液2种介质条件下,对System18牙科合金进行了微动磨损实验。分析了其微动磨损的动力学特性,并结合光镜(OM)、扫描电子显微镜(SEM)对磨痕及磨屑的成分进行了分析。结果表明:人工唾液对微动运行区域有明显改变;人工唾液明显减轻了System18牙科合金的微动损伤;其主要磨损机制为磨粒磨损和剥层磨损。  相似文献   

18.
Lubricated fretting tests in mineral oil were performed with a nanocrystalline surface layer on a pure bulk Cu prepared by surface mechanical attrition treatment (SMAT) against a WC-Co ball. It was found that the nanocrystalline surface layer exhibited a markedly enhanced fretting wear resistance and higher friction coefficient relative to the coarse-grained (CG) form. The wear volume of the SMAT Cu is one order of magnitude lower than that of the CG Cu. The friction coefficient of the SMAT Cu increases with an increasing load and frequency, while for the CG Cu, the friction coefficient increases with an increasing fretting frequency up to 100 Hz and thereafter decreases. The higher hardness of the SMAT Cu is suggested to be the main factor causing its improved wear resistance and higher friction coefficient. A discontinuous metal transfer layer can be found on the WC-Co ball only after fretting against the SMAT Cu, which may partly account for the higher wear resistance of the SMAT Cu in comparison with the CG Cu.  相似文献   

19.
Test results of model tribocouplings with friction surfaces modified by gas-thermal evaporation of copper-containing coating, which owing to friction interaction is transferred to the opposing surface of a counterface, thus mitigating shearing strains in the soft surface layer and preventing seizure of the friction solids/ bodies, are presented in the study. Tribotechnical tests were performed, and friction coefficient η and wear coefficients C of coupling materials both in normal conditions and at high (250°С) temperatures were determined. Application of similar coatings for increasing the working life of full-scale tribocouplings operating in the fretting mode in an aggressive medium at high temperatures is expected.  相似文献   

20.
P.J. Hofmann  N. Wieling 《Wear》1980,65(1):89-102
The coefficients of friction, the friction surface roughening and the mechanisms of wear for 11 metallic materials (high alloy steels and commercially available wear-resistant iron-, nickel- and cobalt-base alloys) were determined by friction tests performed in water at 20 and 300°C. The material combination 1.4550/1.4550 showed adhesive wear and coefficients of friction f of up to 1.6 at low surface pressures. Pure abrasive wear was found with seven hard alloy combinations. Typical curves of the coefficient of friction as a function of the number of friction cycles were obtained with both adhesive and abrasive wear. Short-term tests allowed the tendency of a material combination to adhesive wear to be determined. It was also found that the form of the curve of the coefficient of friction as a function of the number of friction cycles indicated which wear mechanism was operating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号