首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 667 毫秒
1.
基于双重扩展自适应卡尔曼滤波的汽车状态和参数估计   总被引:4,自引:0,他引:4  
准确实时地获取行驶过程中的状态信息是汽车动态控制系统研究的关键,为此提出了一种新的汽车状态估计器。建立了包含不准确模型参数和未知时变统计特性噪声的非线性汽车动力学模型,针对该非线性系统提出一种双重扩展自适应卡尔曼滤波算法(DEAKF)。该算法采用两个卡尔曼滤波器并行运算,状态估计和参数估计互相更新,同时将带遗忘因子的噪声统计估值器嵌入到状态校正过程和参数校正过程之间,以解决系统的噪声时变问题。基于ADAMS的虚拟试验和实车试验结果表明,该算法的状态估计精度高于EKF方法和DEKF方法的状态估计精度,同时具有良好的模型参数校正能力,对汽车动态控制系统中估计器的设计具有理论指导意义。
  相似文献   

2.
TiAlZr合金微动磨损性能研究   总被引:1,自引:0,他引:1  
采用高精度液压式微动磨损试验机研究了TiA lZr合金在不同微动运行区域的微动磨损行为,建立了其运行工况微动图。试验结果表明:滑移区、混合区和部分滑移区的摩擦因数随循环次数变化呈现不同的规律,其中部分滑移区摩擦因数较低,磨损体积随着位移幅值的增大而增大;滑移区、混合区磨损体积随着法向载荷的增加而增大,而部分滑移区磨损体积随着法向载荷的增加而减小;滑移区磨屑堆积于中心区域,磨损以磨粒磨损和剥层机制为主;混合区磨损机制主要表现为粘着磨损与磨粒磨损并存;部分滑移区磨损轻微。  相似文献   

3.
Fretting damage was one of the most important reasons for the failure of the railway axle. Fretting wear (tangential fretting mode) tests of a railway axle steel (LZ50 steel) flats against 52 100 steel balls were carried out under different normal loads and displacement amplitudes on a hydraulic fretting wear rig. Dynamic analyses in combination with microscopic examinations have been performed. The experimental results showed that the fretting regimes of the LZ50 steel were strongly dependent upon the imposed normal loads and displacement amplitudes. The Ft/Fn curves exhibited different variation trends in different fretting running regimes. The fretting scars presented slight damage in partial slip regime. In mixed fretting regime, the trace of the plowing and plastic deformation flow can be observed on the fretting scars. The wear mechanism during this regime was the combination of the abrasive wear, oxidative wear and delamination accompanied with obvious plastic deformation. The detachment of particles and plowing traces were the main phenomena in slip regime. And, thicker debris layer covered the contact zone of the scar. The severe degradation in slip regime presented the main wear mechanisms of abrasive wear, oxidative wear and delamination.  相似文献   

4.
An experimental study torsional fretting behaviors of LZ50 steel   总被引:1,自引:0,他引:1  
Four simple fretting modes are defined according to relative motion: tangential, radial, rotational, and torsional fretting. This paper presents a new test rig that was developed from a low-speed reciprocating rotary system to show torsional fretting wear under ball-on-flat contact. Torsional fretting behavior was investigated for LZ50 steel flats against AISI52100 steel balls under various angular displacement amplitudes and normal loads. The friction torques and dissipation energy were analyzed in detail. Two types of Tθ curves in the shape of quasi-parallelograms and ellipticals were found that correspond to gross and partial slips, respectively. The experimental results showed that the dynamic behavior and damage processes depend strongly on the normal loads, angular displacement amplitudes, and cycles. In this paper, the debris and oxidation behaviors and detachment of particles in partial and gross slip regimes are also discussed. Debris and oxidation are shown to have important roles during the torsional fretting processes. The wear mechanism of torsional fretting was a combination of abrasive and oxidative wear and delamination before third-body bed formation. The mechanism was then transformed into third-body wear after a great amount of debris formed.  相似文献   

5.
采用面接触扭动微动形式,以动力定位系统可调距螺旋桨桨-毂轴承摩擦副材料(CuNiAl-42CrMo4)为对象,以不同的角位移幅值模拟海水波动影响下的微动磨损行为,并结合扫描电子显微镜和超景深三维显微镜对磨痕形貌进行分析,探究桨-毂轴承摩擦副材料扭动微动磨损规律。结果表明,随着角位移幅值的增加,扭动微动依次运行于部分滑移区、混合区、滑移区,摩擦因数减小,同时磨损量增加,微动损伤中剥层机制所占的比例逐渐增加,且由于疲劳裂纹扩展的不利影响,实际运行过程中要尽量避开混合区。  相似文献   

6.
Rotational fretting wear tests in a ball-on-flat configuration have been successfully realized on a special rotational fretting rig developed from an ultra-low-speed reciprocating rotational driver. The rotational fretting behavior of 7075 aluminum alloy against 52 100 steel was studied under different angular displacement amplitudes and normal loads. The results showed that both Ft?θ and Ft/Fn curves can be used to characterize the rotational fretting running behavior, which exhibited different curve shapes and variation trends in different fretting running regimes. The rotational fretting behavior of 7075 aluminum alloy was strongly dependent on the angular displacement amplitude, normal load and number of cycles. The wear of 7075 aluminum alloy was characterized by slight attrition in the partial slip regime, while a combination of delamination, abrasive and oxidative wear was found in the slip and mixed fretting regimes. The formation of a central bulge probably due to plastic flow was observed under gross slip condition of the rotational fretting mode.  相似文献   

7.
Friction and wear behavior of dual-rotary fretting (DRF) combined by torsional and rotational fretting modes have been investigated. Such fretting mode is essentially achieved by changing tilt angles of the rotary axis and varying rotary angular displacement amplitudes The DRF behavior has been characterized from the dynamic behavior, wear damage, third-body behavior, wear mechanisms. The running condition fretting map (RCFM) of DRF fretting wear was established by using the tilt angles and angular displacement amplitudes. The evolution of the wear volume vs the tilt angle under varied angular displacement amplitudes was quantificationally measured. In addition, the competition between the local wear and fatigue (cracking, wear) has been discussed in detail. The results indicated that the damage of 7075 aluminum alloy induced by DRF was strongly dependent upon the tilt angle and the angular displacement amplitude.  相似文献   

8.
关于微动磨损与微动疲劳的研究   总被引:18,自引:2,他引:16  
周仲荣 《中国机械工程》2000,11(10):1146-1150
微动磨损与微动疲劳是2种主要的微动模式,造成的损伤在工业中相当普遍,并可能引发灾难性的后果。主要研究了们移幅度、压力和疲劳应力3个基本微动参数,并以获得的微动区域、微动图为基础,分析了微动磨损与微动疲劳的运行机制和破坏规律。为更好地了解微动磨损与微动疲劳之间的内在联系,进一步探讨了接触磨损与局部疲劳、局部疲劳与整体疲劳之间的竞争机制。  相似文献   

9.
采用钛合金球与自制骨水泥试样以球/平面接触方式,在自制的微动摩擦磨损试验机上开展干摩擦和25%小牛血清介质中切向微动磨损试验研究,考察钛合金球与骨水泥界面之间的微动运行特性,并采用S-3000N型扫描电镜观察磨痕形貌来分析其微动磨损机制。结果表明:随着微动振幅的增加,微动运行由部分滑移区向混合区转变。随着接触载荷的增加,试样接触面之间更容易发生黏着。与干摩擦相比,在小牛血清溶液中部分滑移区向较大振幅区扩展。部分滑移区摩擦因数值较低且保持稳定,混合区的摩擦因数先增大后保持不变。稳定摩擦因数随着接触载荷的增加而减小,随微动振幅增大而增大。骨水泥试样的磨损量在小牛血清介质中比在空气中大,并且随接触载荷增大而增大。骨水泥在小牛血清介质中微动磨损的损伤机制主要为黏着磨损和疲劳磨损,溶液分子在应力作用下对骨水泥基体有削弱作用。  相似文献   

10.
Fretting wear and fatigue may occur between any two contacting surfaces, wherever short‐amplitude reciprocating sliding is present for a large number of cycles. A test device has been developed for the evaluation of fretting fatigue and wear in partial and gross slip conditions. Three similar sphere‐on‐plane contacts run at the same time. Normal force, tangential force or displacement amplitude and constant bulk stress can be controlled and measured separately. Reciprocating tangential displacement is produced with rotational motion, the amplitude and frequency of which can be adjusted and controlled accurately by an electric shaker. The number of load cycles for crack initiation and growth is determined with strain‐gauge measurements near the fretting point of contact. The contact surfaces are measured with 3D optical profilometer before fretting measurements to determine actual contact geometry. The measurements were done with quenched and tempered steel. The initial results indicate that cracks are mostly formed in partial slip conditions, whereas fretting wear is more heavily involved in gross slip conditions. The initiation of a crack occurs near the edge of the contact in the slip direction, where the calculated cracking risk has its maximum value in partial slip conditions. The number of cracks increases as the displacement amplitude, i.e. friction force, increases in partial slip conditions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
The influence of oil lubrication on the fretting wear behaviors of 304 stainless steel flat specimens under different fretting strokes and normal loads has been investigated. The results proved that fretting regimes and fretting wear behaviors of 304 stainless steels were closely related to the fretting conditions. In general, the increase in normal load could increase wear damage during sliding wear. However, according to the results, a significant reduction in wear volume and increase in friction coefficient was observed when the normal load was increased to critical values of 40 and 50 N at a fretting stroke of 50 μm due to the transformation of the fretting regime from a gross slip regime to partial slip regime. Only when the fretting stroke further increased to a higher value of 70 μm at 50 N, fretting could enter the gross slip regime. There was low wear volume and a high friction coefficient when fretting was in the partial slip regime, because oil penetration was poor. The wear mechanisms were fatigue damage and plastic deformation. There was high wear volume and low friction coefficient when fretting was in the gross slip regime, because the oil could penetrate into the contact surfaces. Unlike the wear mechanisms in the partial slip regime, fretting damage of 304 stainless steels was mainly caused by abrasive wear in the gross slip regime.  相似文献   

12.
Dual-motion fretting tests of flat cortical bone specimens from fresh human mandible against pure titanium (TA2) ball were carried out on a modified test rig with tilt angle of 45°. The imposed maximal loads varied from 100 to 200 N. Dynamic characteristics of dual-motion fretting tests were analyzed in combination with micro-examinations via optical microscopy (OM), laser confocal scanning microscopy (LCSM) and scanning electron microscopy (SEM) together with energy dispersive X-ray spectrum (EDX). Two types of F-D curves (the trapezoid and elliptic mode) were recorded during the tests. The examination showed that the wear scars of the dual-motion fretting were asymmetric, and the tangential component of dual-motion fretting was in the mixed fretting regime. Under the lower imposed load, only some detachment of particles and scratches without cracking were observed even after 5×104 cycles. The main wear mechanisms of the dual-motion fretting damage were the abrasive and adhesive wear. Under higher imposed loads, the cracks initiated and propagated mainly at the high stress side of contact edges. The wear mechanisms of the dual-motion fretting of cortical bone under higher imposed loads were the combination of the adhesive wear, abrasive wear, cracking and lubrication of the human bone tissue debris. And the lubrication of the debris played an important role during the dual-motion fretting processes.  相似文献   

13.
The rotational fretting wear behaviors of the bonded MoS2 solid lubricant coating and its substrate steel were comparatively studied under varied angular displacement amplitudes, constant normal load, and rotational speed. Dynamic analysis in combination with microscopic examinations was performed through SEM, EDX, XPS, optical microscope, and surface profilometer. The experimental results showed MoS2 changed the fretting running regimes of substrate. The friction coefficients of MoS2 were lower than those of the substrate. For MoS2, the damage in partial slip regime was very slight. The damage mechanism of the coating in slip regime was main abrasive wear, delamination, and tribo-oxidation.  相似文献   

14.
Abstract

The tension–tension fretting fatigue tests of steel wires were performed on a self-made fretting fatigue test equipment under contact loads ranging from 40 to 70 N and a strain ratio of 0·8. The results showed that when the contact load increased, the fretting regime of steel wires transformed from gross slip regime to mixed fretting regime. The fretting fatigue life in the mixed fretting regime was significantly lower than that in the gross slip regime. The main fretting wear mechanisms in the gross slip regime, where there were serious fretting damage and a lot of wear debris, were abrasive wear and fatigue wear. Microcracks were observed in the fretting scar of the mixed fretting regime, and the main fretting wear mechanisms were adhesive and fatigue wears. The fretting wear scar was the fatigue source region, and the fatigue fracture surface could be divided into three regions.  相似文献   

15.
在自制的微动疲劳试验机上开展中性腐蚀环境下单根钢丝的微动疲劳实验,考察在相同接触载荷下,不同振幅对钢丝的微动疲劳行为的影响,并用扫描电子显微镜观察疲劳钢丝的磨痕和断口形貌,研究钢丝微动疲劳断裂机制.结果表明:在较大的振幅下,钢丝的微动区均处于滑移状态,而在较小振幅下,钢丝的微动区从滑移状态逐渐转变为黏着状态;磨损机制主要为磨粒磨损、疲劳磨损、腐蚀磨损和塑性变形;钢丝疲劳寿命随着微动振幅的增大而减小;钢丝的疲劳断口可分为3个区域,即疲劳源区、裂纹扩展区及瞬间断裂区.  相似文献   

16.
粘结MoS2固体润滑涂层的转动微动磨损特性   总被引:2,自引:0,他引:2  
采用粘结法在LZ50钢表面制备MoS2固体润滑涂层,研究MoS2涂层及LZ50钢基体在干态不同角位移幅值下的转动微动磨损行为。在分析转动微动动力学特性的同时,结合光学显微镜、扫描电子显微镜、电子能谱仪以及轮廓仪对磨痕形貌进行微观分析。结果表明:涂层和基体的转动微动运行区域仅呈现部分滑移区(Partial slip regime,PSR)和滑移区(Slip regime,SR),未观察到混合区。涂层改变基体的微动运行区域,使得PSR缩小,SR运行区域向小角位移幅值方向移动。由于MoS2涂层的固体润滑作用,涂层的摩擦因数在整个试验过程都明显低于基体。在PSR,涂层损伤轻微;在SR,涂层的转动微动磨损机制主要表现为剥层和摩擦氧化。研究表明粘结MoS2固体润滑涂层具有明显的防护作用,显著降低LZ50钢的转动微动磨损。  相似文献   

17.
聚四氟乙烯基粘结固体润滑涂层微动磨损性能研究   总被引:4,自引:0,他引:4  
在不同位移幅值与载荷条件下研究了酚醛环氧粘结聚四氟乙烯(PTFE)基固体润滑涂层的微动磨损特性,并利用扫描电子显微镜、表面轮廓仪和傅里叶表面红外仪等对涂层磨斑进行分析。结果表明,粘结PTFE基涂层具有良好的抗微动损伤性能,随循环次数的变化只存在部分滑移区和滑移区,部分滑移区的损伤轻微,滑移区的损伤强烈依赖于栽荷,其损伤与PTFE分子链在往复交变载荷作用下的疲劳断裂相关。  相似文献   

18.
Dual-rotary fretting (DRF) is a complex fretting wear mode combining torsional fretting with rotational fretting. Two different typical friction-induced convex topographies (Type I and Type II) in contact area were showed, which are under the control of torsional and rotational fretting components, respectively. To investigate their evolution characteristics and formation mechanism, the convex topographies were analyzed by SEM, XPS, a nano-hardness tester and surface profilometry, etc. The results show that the convex topographies significantly depended on the test parameters and environmental conditions. The initiation and propagation of fretting fatigue cracks were found related with the convex topography under the fretting wear.  相似文献   

19.
Bonded MoS2 solid lubricant coatings are widely used in tribology for their friction-reducing and antiwear properties. However, such coatings have been rarely investigated in complex fretting conditions, such as dual-rotary fretting (DRF). DRF is a complex fretting wear mode that combines torsional fretting with rotational fretting. In this work, the antiwear properties of bonded MoS2 solid lubricant coating under dual-rotary fretting conditions were studied. Results indicated that the MoS2 coating had better friction-reducing and antiwear properties than the substrate for alleviating DRF wear. The coating can greatly influence the fretting regimes and reduce the coefficient of friction. Furthermore, the service life of the coating was strongly dependent on the competition of the two fretting components and was reduced as the rotational fretting component increased.  相似文献   

20.
The effects of applying a bonded MoS2 solid lubricant to a 1050 steel substrate were investigated using a torsional fretting wear apparatus. Tests were conducted under a normal load of 50 N with angular displacement amplitudes ranging from 0.1 to 5°. Wear scars were examined using scanning electron microscopy, energy-dispersive X-ray spectrometry, optical microscopy, and surface profilometry. The MoS2 coating exhibited different torsional fretting regimes than those of the substrate. Fretting regimes of the coating were primarily in the partial slip regime (PSR) and the slip regime (SR) with no mixed fretting regime. The width of the PSR narrowed. Due to the lubricating effects of the coating, the friction torque was consistently lower than that of the substrate. The damage to the coating in the PSR was very slight, and its granular structure remained even after 1,000 cycles. The damage mechanism to the SR coating was a combination of abrasive wear, oxidative wear, and delamination. The MoS2 coating had potential to alleviate torsional fretting wear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号