首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogen-free diamond-like carbon (DLC) coatings display markedly lower friction coefficients under a lubricated condition owing to the adsorption of oiliness agents and their decomposed components. This study examined the effect on friction properties of the sp2/sp3 bonding ratio of DLC coatings and the addition of nitrogen for improving surface wettability. Evaluations of friction properties under a lubricated condition showed that DLC coatings with a lower ratio of sp3 bonds and nitrogenated DLC coatings displayed higher friction coefficients. Results obtained by electron spin resonance revealed that adding nitrogen decreased the number of dangling bonds of DLC coatings in proportion to the sp3 bond ratio. Assuming that such dangling bonds are oiliness agent adsorption sites, it is concluded that adding nitrogen is not conducive to reducing friction coefficients.  相似文献   

2.
Diamond-like Carbon (DLC) coatings are increasingly used to reduce wear and lower friction in many applications. Doped DLCs are being produced with the goal of further enhancing the friction and wear profile as well as increasing the coating reliability.Silicon is often incorporated into DLC as it is known to affect the sp2/sp3 ratio which in turn can affect the hardness of the film. It can also improve adhesion of the DLC coating to the substrate and lower internal stress.In this study, investigations into the wear behaviour, tribochemistry and oil-formulation dependence of Si, O-doped DLC (Si-DLC) were conducted. The oxidative stability of Si-DLC was also examined.Silicon-doped DLC is able to form a protective tribofilm when a fully-formulated lubricant is used. The tribofilm is composed of S, P, Ca and Zn which are widely recognised as being important to wear reduction.A mechanism of wear repression facilitated by oil additives is proposed.  相似文献   

3.
The tribological performance of hydrogenated diamond-like carbon (DLC) coatings is studied by molecular dynamics simulations employing a screened reactive bond-order potential that has been adjusted to reliably describe bond-breaking under shear. Two types of DLC films are grown by CH2 deposition on an amorphous substrate with 45 and 60 eV impact energy resulting in 45 and 30% H content as well as 50 and 30% sp3 hybridization of the final films, respectively. By combining two equivalent realizations for both impact energies, a hydrogen-depleted and a hydrogen-rich tribo-contact is formed and studied for a realistic sliding speed of 20 m s−1 and loads of 1 and 5 GPa. While the hydrogen-rich system shows a pronounced drop of the friction coefficient for both loads, the hydrogen-depleted system exhibits such kind of running-in for 1 GPa, only. Chemical passivation of the DLC/DLC interface explains this running-in behavior. Fluctuations in the friction coefficient occurring at the higher load can be traced back to a cold welding of the DLC/DLC tribo-surfaces, leading to the formation of a transfer film (transferred from one DLC partner to the other) and the establishment of a new tribo-interface with a low friction coefficient. The presence of a hexadecane lubricant leads to low friction coefficients without any running-in for low loads. At 10 GPa load, the lubricant starts to degenerate resulting in enhanced friction.  相似文献   

4.
The role of hydrogen on the friction mechanism of diamond-like carbon films   总被引:2,自引:0,他引:2  
Donnet  C.  Fontaine  J.  Grill  A.  Le Mogne  T. 《Tribology Letters》2001,9(3-4):137-142
The structure, properties and tribological behavior of DLC films are dependent on the deposition process, the hydrogen concentration and chemical bondings in the films. The present paper reports selected tribological experiments on model DLC films with different hydrogen contents. The experiments were performed in ultrahigh vacuum or in an atmosphere of pure hydrogen or argon in order to elucidate various friction mechanisms. Two typical friction regimes are identified. High steady-state friction in UHV (friction coefficient of 0.6) is observed for the lowest hydrogenated and mostly sp2-bonded DLC film. Superlow steady-state friction (friction coefficient in the millirange) is observed both for the highest hydrogenated film in UHV, and for the lowest hydrogenated film in an atmosphere of hydrogen (10 hPa). The high steady-state friction in UHV, observed for the lowest hydrogenated film with a dominant sp2 carbon hybridization, is associated with a –* sub-band overlap responsible for an increased across-the-plane chemical bonding with a high shear strength similar to what is observed with unintercalated graphite in the same UHV conditions. Superlow friction is correlated with a hydrogen saturation across the shearing plane through weak van der Waals interactions between the polymer-like hydrocarbon top layers. This regime is observed during the steady-state period if the film contains enough hydrogen incorporated during deposition. If this condition is not satisfied (i.e., for the film with the lowest hydrogen content), the limited diffusion of hydrogen from the film network towards the sliding surfaces seems to be responsible for a superlow running-in period. The superlow friction level can be reached over longer time periods by suitable combinations of temperature and molecular hydrogen present in the surrounding atmosphere during friction.  相似文献   

5.
This study concerns the effects of tribochemical interactions at the interface of Si-DLC (silicon-doped diamond-like carbon) film and steel ball in sliding contact on tribological properties of the film. The Si-DLC film was over-coated on pure DLC coating by radio frequency plasma-assisted chemical vapor deposition (r.f. PACVD) with different Si concentration. Friction tests against steel ball using a reciprocating type tribotester were performed in ambient environment. X-Ray photoelectron spectroscopy (XPS) and auger electron spectroscopy (AES) were used to study the chemical characteristics and elemental composition of the films and mating balls after tests. Results showed a darkgray film consisting of carbon, oxygen and silicon on the worn steel ball surface with different thickness. On the contrary, such film was not observed on the surface of the ball slid against pure DLC coating. The oxidation of Si-DLC surface and steel ball was also found at particular regions of contact area. This demonstrates that tribochemical interactions occurred at the contact area of Si-DLC and steel ball during sliding to form a tribofilm (so called transfer film) on the ball specimen. While the pure DLC coating exhibited high coefficient of friction (∼0.06), the Si-DLC film showed a significant lower coefficient of friction (∼0.022) with the presence of tribofilm on mating ball surface. However, the Si-DLC film possesses a very high wear rate in comparison with the pure DLC. It was found that the tribochemical interactions strongly affected tribological properties of the Si-DLC film in sliding against steel.  相似文献   

6.
In this study, the authors investigated the tribological performance of diamond and diamondlike carbon (DLC) films as a function of temperature. Both films were deposited on silicon carbide (SiC) by microwave plasma chemical vapor deposition and ion-beam deposition processes. Tribological tests were performed on a reciprocating wear machine in open air (20 to 30% relative humidity) and under a 10 N load using SiC pins. For the test conditions explored, the steady-state friction coefficients of test pairs without a diamond or DLC film were 0.7 to 0.9 and the average wear rates of pins were 10?5 to 10?7 mm3/N·m, depending on ambient temperature. DLC films reduced the steady-slate friction coefficients of the test pairs by factors of three to five and the wear rates of pins by two to three orders of magnitude. Low friction coefficients were also obtained with the diamond films, but wear rates of the counterface pins were high due to the very abrasive nature of these films. The wear of SiC disks coated with either diamond or DLC films was virtually unmeasurable while the wear of uncoated disks was substantial. Test results showed that the DLC films could afford low friction up to about 300° C. At higher temperatures, the DLC films graphitized and were removed from the surface. The diamond films could withstand much higher tempera-lures, but their tribological behavior degraded. Raman spectroscopy and scanning electron microscopy were used to elucidate the friction and wear mechanisms of both films at high temperatures.  相似文献   

7.
Small amplitude (50 μm) reciprocating wear of hydrogen-containing diamond-like carbon (DLC) films of different compositions has been examined against silicon nitride and polymethyl-methacrylate (PMMA) counter-surfaces, and compared with the performance of an uncoated steel substrate. Three films were studied: a DLC film of conventional composition, a fluorine-containing DLC film (F-DLC), and silicon-containing DLC film. The films were deposited on steel substrates from plasmas of organic precursor gases using the Plasma Immersion Ion Implantation and Deposition (PIIID) process, which allows for the non-line-of-sight deposition of films with tailored compositions. The amplitude of the resistive frictional force during the reciprocating wear experiments was monitored in situ, and the magnitude of film damage due to wear was evaluated using optical microscopy, optical profilometry, and atomic force microscopy. Wear debris was analyzed using scanning electron microscopy and energy dispersive spectroscopy. In terms of friction, the DLC and silicon-containing DLC films performed exceptionally well, showing friction coefficients less than 0.1 for both PMMA and silicon nitride counter-surfaces. DLC and silicon-containing DLC films also showed significant reductions in transfer of PMMA compared with the uncoated steel. The softer F-DLC film performed similarly well against PMMA, but against silicon nitride, friction displayed nearly periodic variations indicative of cyclic adhesion and release of worn film material during the wear process. The results demonstrate that the PIIID films achieve the well-known advantageous performance of other DLC films, and furthermore that the film performance can be significantly affected by the addition of dopants. In addition to the well-established reduction of friction and wear that DLC films generally provide, we show here that another property, low adhesiveness with PMMA, is another significant benefit in the use of DLC films.  相似文献   

8.
The tribological properties of diamond-like carbon (DLC) coatings have drawn much attention of OEMs and lubricant manufacturers in recent years. It is important to know whether conventional friction modifier and antiwear additives can form durable films and work as effectively with DLCs as they normally do on steel surfaces. In this study, the film-forming and friction properties of the antiwear additive ZDDP and the strength of tribofilms formed by this additive on five widely used DLC types, namely a-C:H, a-C:H:W, a-C:H:WC, Si-DLC and ta-C, have been investigated. It is found that ZDDP-derived tribofilms form on all the DLCs but exhibit different friction characteristics based on DLC type. With all DLCs, the amount of tribofilm elements measured after durability tests was less than that measured initially. Over 90 % of thiophosphate and 70 % of sulphide/sulphate were lost during durability tests. ZDDP tribofilms were found to be strongly adhered on Si-DLC and a-C:H compared with the other DLCs. The ZDDP tribofilms formed in DLC/DLC contact appear to be similar in structure to those formed in steel/steel contact but not to exhibit the antiwear performance seen in steel/steel contacts.  相似文献   

9.
Tribological behavior of hydrogenated diamond-like carbon (DLC) films and Si incorporated DLC (Si-DLC) films deposited on Si (100) wafer by r.f.-plasma assisted chemical vapor deposition were investigated by ball-on-disk type tribometry in various environments. The friction tests were performed in ambient air of relative humidity ranging from 0% to 90% or dry oxygen environment. We focused on the tribochemical reactions by analyzing chemical composition, chemical bond structure and agglomerated shape of the debris. High and unstable friction behavior was observed in both humid air and dry oxygen environments. In these environments, Auger spectrum analysis showed that the debris contained large amounts of Fe. Significant incorporation of Fe in the debris resulted from the wear of the steel ball, which might be enhanced by the surface oxidation of the ball. These results show that the humidity dependence of friction coefficient is not an inherent tribological property of DLC films but results from the surface reaction of the steel ball in humid environments. Two possible reasons for the Fe rich debris affecting the friction behavior are presented. Reduced dependence of the friction coefficient on the relative humidity observed for Si-DLC films is discussed in terms of the two possible reasons.  相似文献   

10.
A systematic study was conducted on the effect of plasma-enhanced CVD processing parameters, namely bias voltage, pressure and CH4/Ar flow ratio, on the characteristics and tribological response of amorphous hydrogenated carbon (a-C:H) films. Film hardness, intrinsic stress, structure, composition and tribological response were characterized. Variation of processing parameters was found to produce a-C:H films with a range of characteristics with the CH4/Ar ratio exercising a dominant effect. A low ratio produced harder films with more sp3 bonding, low hydrogen content and low wear rate; whereas a high ratio produced softer films, with more sp2 bonding, higher hydrogen content and low friction. Film characteristics were found to affect the wear mechanism with softer films showing a layer-by-layer removal and harder films involving formation of fine debris. These two diverse types of films offer the opportunity to synthesize multilayered films combining desirable properties from each component.  相似文献   

11.
Evaluation of the friction of WC/DLC solid lubricating films in vacuum   总被引:1,自引:0,他引:1  
The accuracy of nanopositioning is to a large extent limited by the friction-caused errors, particularly in vacuum environments. An investigation of the friction behaviour of sp2-bonds dominating diamond like carbon (DLC) coatings and WC1−x/DLC, WC(N)/DLC multilayer coatings, which are considered to be used in nanopositioning in vacuum, have been performed by a vacuum microtribometer. By using an atomically smooth Si sphere as a counterface, the reciprocating sliding friction was measured at a normal load <5 mN, and running speed at a 1–100 μm/s in ambient air and in ultra high vacuum (UHV) at 10−7 Pa, and correlated with microstructures and properties of the coatings. When tested in UHV, the coefficient of friction (COF) for pure DLC coatings (thickness: 700 nm) changes significantly between 0.2 and 0.4. Once the thickness of DLC layers is limited to 5 nm by formation of multilayer coatings, the COF in UHV decreases by nearly one order to 0.02–0.05. We suggest that the deformation of DLC films and the transfer films determines COF. Thick DLC coatings can induce more plastic deformation and consumes more energy in sliding resulting in a high COF. Thickening of the transfer film in running leads to a continuous decrease of COF since the deformation of the transfer films turns easier. The low COF of multilayer coatings is mainly due to their confinement of the thickness of DLC films. A consistent velocity-strengthening frictional behaviour of both WC1−x/DLC and WC(N)/DLC coatings in UHV indicates that the transfer films acting as a thin layer of granular material. Further study of the friction behaviour with the presence of such granular materials might be interesting for the further development of tribological coatings for vacuum applications.  相似文献   

12.
Three types of diamond-like carbon (DLC) films, pure DLC, F-containing DLC, and a Si-containing DLC film, were deposited on a WC–Co substrate by a plasma-enhanced CVD technique. Friction and wear properties were determined using a ball-on-plate type reciprocating friction tester in water, comparing the water results to those in ambient air. The friction coefficient of DLC and F–DLC films in water was considerably lower than that in air. With Si–DLC, the friction was almost the same level in both water and air, and was less than 0.1. The specific wear rate of films in water was much smaller than that in air and varied around the low level of 10–8 mm3/Nm in water, The mating ball wear was also less than 10–8 mm3/Nm. With DLC and F–DLC films, the transferred amount of material on the friction surface of a mating ball was larger in a water environment than that in air. With a Si–DLC film, the difference in the transferred amount when exposed to either the water or air environment was negligible.  相似文献   

13.
采用中频非平衡磁控溅射方法在箔片空气轴承的主轴材料40Cr钢、支承元件铍青铜箔片及硅片上制备了钛掺杂的DLC膜,并对膜的结构、摩擦磨损性能、结合强度以及内应力等进行了表征.结果表明:所制备的DLC膜含有较多的sp2键,与基体结合力强,两种轴承材料上沉积DLC膜之间的摩擦配副的减摩抗磨效果较好,摩擦因数在0.06~0.0...  相似文献   

14.
The work presents data on friction and wear behaviour of pin-on-disc pairs with superhard diamond-like carbon (DLC) coatings and hard coatings of zirconium nitride (ZrN) and titanium nitride (TiN) in liquid nitrogen with loads of 2.5 and 10 N and sliding speed of 0.06 m/s. It is shown that at cryogenic temperatures the friction coefficients of pairs of two types of DLC coatings obtained by vacuum-arc deposition of filtered high-speed carbon plasma fluxes depend to a great deal on the mechanical properties of the coatings defined by predominant sp2 or sp3 hybridization of valence electrons. A friction coefficient of 0.76 was observed for friction pairs of superhard (90 GPa) DLC coatings having properties similar to those of diamond. For “softer” DLC coatings of 40 GPa and properties similar to those of graphite the friction coefficient shows lower values (0.24–0.48) dependent on normal load and counterbody material. The DLC coatings obtained by the filtered arc technology exhibit good wear resistance and have strong adhesion to the substrate under friction in liquid nitrogen. With a normal load of 10 N under cryogenic temperature a low wear rate (of the order of 7.2×10−4 nm/cycle) was found for superhard DLC coatings. The friction coefficient of pairs with hard ZrN and superhard DLC coatings on steel discs was revealed to be linearly dependent on the counterbody material hardness between 20 and 100 GPa. The hardness of the pin was varied by means of depositing TiN or DLC coatings and also by using high-hardness compounds (boron nitride and synthetic diamond). Proceeding this way can be promising since it offers the possibility of creating low-temperature junctions of required friction properties.  相似文献   

15.
TiNi表面磁控溅射DLC薄膜的纳米压痕与摩擦性能   总被引:1,自引:0,他引:1  
采用室温磁控溅射技术在TiNi合金表面制备出DLC/SiC(类金刚石/碳化硅)双层薄膜(SiC为中间层),采用拉曼光谱仪、纳米压痕仪和球-盘式摩擦磨损仪研究DLC薄膜的结构、纳米压痕和摩擦性能.结果表明:制备的DLC/SiC薄膜石墨含量高、纳米硬度(5.493 GPa)低、弹性模量(62.2447 GPa)低.在以氮化硅球(半径为2mm)为对摩件,4.9N载荷、室温、Kokubo人体模拟体液润滑下,该DLC/SiC薄膜具有低且稳定的摩擦因数,其平均值约为0.094.  相似文献   

16.
The tribological behavior of alternating-layered diamond-like carbon (DLC) films was examined under a variety of humid conditions. Alternating deposited layers with Si-incorporated DLC (Si-DLC) and DLC films were prepared using a hybrid coating system. The residual stress of the alternating-layered films was reduced while the hardness was relatively less dependent on the number of alternating-layered sets. A ball-on-disk type tribological test was carried out under the following humid conditions: dry, 50% and 90% relative humidity. The friction coefficient for higher number of alternating-layered sets decreased with increasing humidity conditions but there was no dependency on the wear rate.  相似文献   

17.
Tribological properties of ultra nanocrystalline diamond (UNCD) films have chemically been modified by N+ ion implantation and subsequent annealing processes. Friction coefficient is found to be 0.15 in as-prepared film comparing to 0.09 and 0.05 in N+ ion implanted and post-annealed films, respectively. Such a modification of friction coefficient is a characteristic of the transformation of sp3 to graphitized/amorphized sp2 bonded carbon network. Transformation of sp3 to sp2 carbon network causes conversion of higher surface energy state (hydrophilic) to lower (hydrophobic) one which results in ultra low friction coefficient. Graphitization/amorphization in wear track observed by micro Raman spectroscopy is found to be the prominent mechanism for the reduction in friction coefficient.  相似文献   

18.
A series of graphite-like carbon films with a titanium concentration of about 3.0 at.% were successfully deposited on silicon wafer substrates using an unbalanced magnetron sputtering system with different bias voltages. The microstructure, surface morphology, and properties of the titanium-containing graphite-like carbon films were subsequently studied using different characterization techniques. The results show that the resulting titanium-containing graphite-like carbon films are completely dominated by sp2 sites and that these films have moderate hardness, low internal stress, and superior tribological properties with low friction and a high load-bearing capacity. The hardness (H), elastic modulus (E), H/E, H 3/E 2, and internal stress of the titanium-containing graphite-like carbon films initially increase with increasing bias voltage, only to be followed by a decrease with further increases in the bias voltage. Tribologically, the studied carbon film shows a slight increase in friction with increasing bias voltage, while the wear rate initially decreases, followed by an obvious increase. The tribological properties of the studied titanium-containing graphite-like carbon films are greatly improved under the liquid paraffin-lubricated condition, achieving extremely low friction (~0.045) and wear (~10?9 mm3/Nm). The effect of bias voltage on the microstructure and properties of the titanium-containing graphite-like carbon films is discussed in detail.  相似文献   

19.
Miyoshi  K.  Wu  R.L.C.  Lanter  W.C. 《Tribology Letters》1997,3(2):141-145
Friction and wear behavior of ion-beam-deposited diamondlikecarbon (DLC) films coated on chemical-vapor-deposited (CVD),fine-grain diamond coatings were examined in ultrahigh vacuum,dry nitrogen, and humid air environments. The DLC films wereproduced by the direct impact of an ion beam (composed of a 3 :17 mixture of Ar and CH4) at ion energies of 1500 and700 eV. Sliding friction experiments were conducted withhemispherical CVD diamond pins sliding on four differentcarbon-base coating systems: DLC films on CVD diamond; DLC filmson silicon; as-deposited, fine-grain CVD diamond; andcarbon-ion-implanted, fine-grain CVD diamond on silicon. Resultsindicate that in ultrahigh vacuum theion-beam-deposited DLC films on fine-grain CVD diamond (similarto the ion-implanted CVD diamond) greatly decrease both thefriction and wear of fine-grain CVD diamond films and providesolid lubrication. In dry nitrogen and in humid air,ion-beam-deposited DLC films on fine-grain CVD diamond films alsohad a lowsteady-state coefficient of friction and a low wear rate. Thesetribological performance benefits, coupled with a wider range ofcoating thicknesses, led to longer endurance life and improvedwear resistance for the DLC deposited on fine-grain CVD diamondin comparison to the ion-implanted diamond films. Thus, DLCdeposited on fine-grain CVD diamond films can be an effectivewear-resistant, lubricating coating regardless of environment.  相似文献   

20.
Zhang  Wei  Tanaka  Akihiro  Wazumi  Koichiro  Koga  Yoshinori 《Tribology Letters》2003,14(2):123-130
Diamond-like carbon (DLC) film was deposited on Si wafer by a plasma CVD deposition system using benzene. Tribological properties of the DLC film were evaluated using a ball-on-disk tribo-meter in low (RH 1720 %) and high humidity (RH 9095 %) conditions in air. The effect of sliding speed (4.2 mm/s to 25 mm/s) and load (1.06 N to 3.08 N) on friction and wear was investigated. The friction behavior of the DLC film was obviously different in low and high humidity. When tested under low humidity conditions, the friction coefficient decreased significantly with increasing speed, and increased with load. However, under high humidity conditions, the friction coefficient increased with the speed and decreased with increasing load. The wear of the DLC film was little influenced by the sliding speed, normal load and humidity; a level of 10-8 mm3/Nm could be obtained in all tests. The formation of a uniform transfer layer would be the main factor which controlled the friction coefficient of the DLC films. Unlike the friction, the wear resistance of the DLC film is not so easy to discuss and may be affected mainly by the tribo-chemical reaction in all the test conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号