where W is the wear volume (depth), K the wear coefficient, P the contact pressure, S the slippage.And then the stress intensity factor for cracking due to fretting fatigue was calculated by using contact pressure and frictional stress distributions, which were analyzed by the finite element method. The SN curves of fretting fatigue were predicted by using the relationship between the calculated stress intensity factor range (ΔK) with the threshold stress intensity factor range (ΔKth) and the crack propagation rate (da/dN) obtained using CT specimens of the material. And then fretting fatigue tests were conducted on Ni–Cr–Mo–V steel specimens. The SN curves of our experimental results were in good agreement with the analytical results obtained by considering fretting wear process. Using these estimation methods we can explain many fretting troubles in industrial fields.  相似文献   

7.
Fretting wear behavior of nitrogen ion implanted titanium alloys in bovine serum lubrication   总被引:1,自引:0,他引:1  
Yong Luo  Shirong Ge 《Tribology International》2009,42(9):1373-1379
Nitrogen ion implantation was performed on biomedical titanium alloys by using of the PBII technology to improve the surface mechanical properties for the application of artificial joints. The titanium nitride phase was characterized with X-ray photoelectron spectroscopy (XPS). The nanohardness of the titanium alloys and implanted samples were measured by using of in-situ nano-mechanical testing system (TriboIndenter). Then, the fretting wear of nitrogen ion implanted titanium alloys was done on the universal multifunctional tester (UMT) with ball-on-flat fretting style in bovine serum lubrication. The fretting wear mechanism was investigated with scanning electron microscopy (SEM) and 3D surface profiler. The XPS analysis results indicate that nitrogen diffuses into the titanium alloy and forms a hard TiN layer on the Ti6Al4V alloys. The nanohardness increases from 6.40 to 7.7 GPa at the normal load of 2 mN, which reveals that nitrogen ion implantation is an effective way to enhance the surface hardness of Ti6Al4V. The coefficients of friction for Ti6Al4V alloy in bovine serum are obviously lower than that in dry friction, but the coefficients of friction for nitrogen ion implanted Ti6Al4V alloy in bovine serum are higher than that in dry friction. Fatigue wear controls the fretting failure mechanism of nitrogen ion implanted Ti6Al4V alloy fretting in bovine serum. The testing results in this paper prove that nitrogen ion implantation can effectively increase the fretting wear resistance for Ti6Al4V alloy in dry friction, and has a considerable improvement for Ti6Al4V alloy in bovine serum lubrication.  相似文献   

8.
Fretting wear behavior of TiB2-based materials against bearing steel under water and oil lubrication     
B. Basu  J. Vleugels  O. Van Der Biest 《Wear》2001,250(1-12):631-641
Lubricated fretting tests in water and paraffin oil were performed with a monolithic TiB2, a TiB2-based cermet with 16 vol.% Ni3(Al, Ti) binder, a sialon–TiB2 (60/40) composite and a ZrO2–TiB2 (70/30) composite against ball bearing grade steel. Based on the measured friction and wear data, the ranking of the investigated fretting couples was evaluated. Furthermore, the morphological investigations of the worn surfaces and transfer layers are carried out and the wear mechanisms for the investigated friction couples are elucidated. While fretting in water, experiments revealed that tribochemical reactions, coupled with mild abrasion, played a major role in the wear behavior of the studied material combinations. ZrO2–TiB2 (70/30)/steel wear couple has been found to have the highest fretting wear resistance among the different tribocouples under water lubrication. Under oil lubrication, extensive cracking of the paraffin oil at the fretting contacts, caused by tribodegradation, leads to the deposition of a carbon-rich lubricating layer, which significantly reduced friction and wear of all the investigated tribosystems.  相似文献   

9.
Third Particle Ejection Effects on Wear with Quenched and Tempered Steel Fretting Contact     
Jouko Hintikka  Arto Lehtovaara  Antti Mäntylä 《摩擦学汇刊》2017,60(1):70-78
The design and life prediction of fretting wear-sensitive mechanical components remain a challenge. In the present work, the role of wear particle movements under conditions of axisymmetric loading of an annular flat-on-flat contact were investigated using self-mated quenched and tempered steel specimens. Total fretting wear significantly increased when loose wear particles were periodically removed from the interface, and this effect increased as a function of the sliding amplitude. Additionally, increased wear was measured when grooves perpendicular to the sliding direction were added to the interface. Increasing the rate of wear debris ejection leads to increased wear rate because naturally occurring entrapped third-body particles significantly reduce the wear. The shape of fretting loops and values of the average and maximum coefficient of friction remained unaffected by the removal of entrapped wear debris and by the introduction of the grooves.  相似文献   

10.
Fretting fatigue and wear damage of structural components in nuclear power stations—Fitness for service and life management perspective     
M. Helmi Attia   《Tribology International》2006,39(10):1294-1304
Fretting fatigue and wear problems have major economical and safety impact on the nuclear industry. This keynote paper provides examples of the fretting problems encountered in nuclear power stations and an overview of the methodologies used to assess their root cause, their potential effect on the integrity of structural components and the future damage projection for risk management. The limitations of existing models that are commonly used to predict fretting wear rate are discussed. A system approach to the fretting wear/fatigue problem allowed us to significantly improve the capability of predicting fretting damage through the recognition of the problem nonlinearity, and the effect of self-induced changes. The application of linear elastic fracture mechanics principles for predicting the fretting wear and fretting fatigue strength is demonstrated. The paper underlines the critical roles of the following two factors. First, the validation of the above mentioned methodologies, through experimental investigation of the long-term fretting wear and fatigue behavior of structural components under realistic operating conditions. Second, the qualification of in -situ measurements of fretting wear damage using nondestructive evaluation NDE and inspection methods.  相似文献   

11.
Fretting wear of carburized titanium alloy against ZrO2 under serum lubrication     
Yong Luo  Shirong GeDekun Zhang  Qingliang WangHongtao Liu 《Tribology International》2011,44(11):1471-1475
Fretting wear of carburized titanium alloys was investigated on the universal multifunctional tester (UMT) with the ball-on-flat fretting style under bovine serum lubrication. The tangential load and friction coefficient during the fretting process were analyzed, and the evolution of fretting log during the fretting process was investigated to understand the wear mechanism of the titanium alloy and carburized titanium alloy. Furthermore, the wear scar was examined using a SEM and three-dimension surface profiler. It was found that the friction coefficient of the titanium alloy increased faster than that of carburized titanium alloy in the first stage under serum lubrication, and then remained steady with a similar value in the second stage. The Ft-D curve indicated that there was wear mechanism transition from gross slip to mixed stick and slip. Finally, it was observed that there was a slight damage of the titanium alloy and carburized titanium alloy showed excellent performance during the fretting wear process under serum lubrication. All of the results suggested that carburized titanium alloy was a potential candidate for the stem material in artificial joints.  相似文献   

12.
Fretting wear behavior of nanocrystalline surface layer of copper under dry condition     
Y.S. Zhang  Z. Han  K. Lu 《Wear》2008,265(3-4):396-401
Unlubricated fretting tests were performed with a nanocrystalline surface layer of a 99.99 wt.% copper fabricated by means of surface mechanical attrition treatment (SMAT), in comparison with a coarse-grained (CG) copper. The measured friction and wear data show that the fretting wear resistance is markedly enhanced with the nanocrystalline surface layer relative to the CG counterpart. The friction coefficient and wear volume of the SMAT Cu are lower than that of the CG Cu. For both samples, the friction coefficients and wear volumes increase with an increasing applied load and fretting frequency. A rapid increase of the friction coefficient and wear volume under an applied load above a critical value (30 N for the SMAT Cu and 20 N for the CG Cu) is noticed, corresponding to the formation of a continuous oxide layer between two contact surfaces. Also two sharp increases of the friction coefficient and wear volume at fretting frequencies of 50 Hz and 175 Hz were observed for the SMAT and the CG Cu. The former is correlated with the formation of a continuous oxide layer, while the latter corresponds to wearing away of the oxide layer.  相似文献   

13.
Fretting behaviour of W-Si coated steels in vacuum environments     
A. Ramalho 《Wear》2006,261(1):79-85
This study was focused on the effects of stroke on the fretting behaviour of sputtered W-Si coatings under room and vacuum environments. Fretting tests were carried out with AISI 52100 steel hemispherical ended pin against W-Si coated AISI M2 steel. The tangential force and the applied strokes were monitored during the tests in order to build up the fretting loops. The surface morphology of the wear scars was analysed by optical and scanning electron microscopy (SEM) in order to identify the wear modes and the fretting mechanisms. The shape of the fretting loops was used to characterise the fretting regimes. The formation of adherent films is determinant on the fretting behaviour and depends on the test environment. Electron probe microanalysis (EPMA) was used to analyse the composition of the adherent material and the role of oxides on the formation of the transferred layers. The influence of the coating on the fretting characteristics was discussed comparing coated and uncoated specimens.  相似文献   

14.
Fretting wear of Ti-48Al-2Cr-2Nb   总被引:1,自引:0,他引:1  
Kazuhisa Miyoshi  Bradley A. Lerch  Susan L. Draper 《Tribology International》2003,36(2):693
An investigation was conducted to examine the wear behavior of gamma titanium aluminide (Ti-48Al-2Cr-2Nb in atomic percent) in contact with a typical nickel-base superalloy under repeated microscopic vibratory motion in air at temperatures from 296–823 K. The surface damage observed on the interacting surfaces of both Ti-48Al-2Cr-2Nb and superalloy consisted of fracture pits, oxides, metallic debris, scratches, craters, plastic deformation, and cracks. The Ti-48Al-2Cr-2Nb transferred to the superalloy at all fretting conditions and caused scuffing or galling. The increasing rate of oxidation at elevated temperatures led to a drop in Ti-48Al-2Cr-2Nb wear at 473 K. Mild oxidative wear was observed at 473 K. However, fretting wear increased as the temperature was increased from 473–823 K. At 723 and 823 K, oxide disruption generated cracks, loose wear debris, and pits on the Ti-48Al-2Cr-2Nb wear surface. Ti-48Al-2Cr-2Nb wear generally decreased with increasing fretting frequency. Both increasing slip amplitude and increasing load tended to produce more metallic wear debris, causing severe abrasive wear in the contacting metals.  相似文献   

15.
45钢的摩擦磨损特性实验研究     
李占君  王霞 《机械》2007,34(11):71-72
采用自制的销盘式干滑动摩擦磨损试验机,研究了45钢配副的摩擦磨损特性.结果表明:材料的磨损率随着速度、载荷的增加而增大;摩擦系数随着速度、载荷的增加而减小.磨损机理主要为磨粒磨损和粘着磨损.  相似文献   

16.
Fretting damage assessment of titanium alloys using orientation imaging microscopy     
Dana R. Swalla  Richard W. Neu   《Tribology International》2006,39(10):1016
The formation of fretting damage and cracks depends strongly on the microstructure. Recent advances in orientation imaging microscopy (OIM) make it possible to obtain new assessment measurements of the near-surface layers containing fretting damage. In particular, crystallographic grain orientation, misorientations between grains, accumulation of plastic deformation, and the evolution of microstructure leading to microtexture formation and twinning can be determined using OIM. Insight into the hexagonal close packed (HCP) structured metals and alloys is the focus of this study. The examination of the subsurface layers of Ti–6Al–4 V samples reveals that OIM using electron backscatter diffraction (EBSD) is a useful tool to quantify evolution of strain-induced microstructural changes due to deformation in the near-surface layers both in surface treatment processes and in fretting or sliding conditions. Fretting damage in a commercially pure titanium (CP Ti) and a near α Ti–5Al–2.5Sn is also assessed to further evaluate this new characterization method. This study summarizes what can be gained from OIM and the challenges associated with using the technique to characterize near surface microstructures.  相似文献   

17.
三环减速器偏心套微动磨损分析   总被引:9,自引:0,他引:9  
崔建昆  张光辉 《机械设计》1996,(12):31-32,39
三环减速器在运转过程中产生磨损及发热的原因是作用于偏心套上的交变转矩在平键联接处产生的微动现象。本文提出了消除微动磨损的有效措施。  相似文献   

18.
载荷对径向微动磨损的影响     
郝慧娇 《新技术新工艺》2011,(11):10-11
为了研究在实际工况中较为常见的圆柱/平面接触副的径向微动磨损特性,分析载荷对径向微动磨损影响,本文通过ANSYS建立圆柱/平面的径向微动磨损模型,分析施加载荷过程,不同时间点的载荷对径向微动磨损的影响,并通过接触切应力和X方向应力的分析,提出径向微动磨损在粘滑过渡点以及X方向应力为零的点为裂纹萌生点.  相似文献   

19.
Fretting wear of laterally supported tube     
Hyung-Kyu Kim  Seon-Jae Kim  Kyung-Ho Yoon  Heung-Seok Kang  Kee-Nam Song 《Wear》2001,250(1-12):535-543
The fretting wear of a tube, which is in contact with a lateral support, is examined experimentally. A fretting wear tester is specifically designed. Elastic springs are used as the support, which can simulate the contact between a spacer grid and a fuel rod in pressurized water reactor fuel. The tubes and the springs are made of Zircaloy-4. The experiments are conducted in air at room temperature. The experimental conditions, i.e. the normal and shear forces on the contact, the slip range and the number of cycles, are set to be the same. To investigate the influence of the contact geometry on the wear, the spring supports have a concave, a flat or a convex contour. The influence on the axial and transverse slip directions is investigated to incorporate the actual tube motion caused by such a flow-induced vibration in the reactor. The wear on the tube is examined by the surface roughness tester, which measures the depth, and the contour of the worn surface of the tube. Since the shape and the distribution of wear are found arbitrary, a method for evaluating the wear volume is proposed using the signal processing technique. It is found that wear can be restrained when the slip direction is transverse, and if the support has a concave contour.  相似文献   

20.
钛合金在水介质中的微动磨损特性研究     
丁红燕  戴振东  徐洮 《润滑与密封》2005,(6):28-29,32
在SRV实验机上对TC11钛合金在水中进行微动磨损研究,研究了载荷大小、振幅等对摩擦因数和磨损量的影响。结果表明,钛合金在水中微动的摩擦因数虽然随载荷或振幅的变化无规律可循,但随着振幅的减小却越来越稳定;其磨损量均随着载荷或振幅的增加而增加;小振幅时的磨损机制符合疲劳脱层理论,而大振幅时则主要是磨粒磨损机制。  相似文献   

  首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fretting wear behavior of AZ91D and AM60B magnesium alloys   总被引:2,自引:0,他引:2  
Weijiu Huang  Bin Hou  Youxia Pang  Zhongrong Zhou 《Wear》2006,260(11-12):1173-1178
The fretting wear behavior of the AZ91D and AM60B magnesium alloys are investigated using a reciprocating fretting wear machine under dry conditions with different numbers of cycles, different normal loads, slip amplitudes and frequencies. The worn surfaces and wear debris were examined using scanning electron microscopy and optical microscopy in order to understand the predominant wear mechanisms of two magnesium alloys. The results indicate that the AZ91D alloy displays a lower friction coefficient and lower wear quantity than the AM60B alloy. The AZ91D shows a higher capability than AM60B in resisting crack nucleation and propagation. Both AZ91D and AM60B show similar friction and wear characteristics. The wear quantity increases with increasing normal load, but decreases with increasing frequency. The friction coefficient also decreases as the normal load is increased. Fretting frequency had little effect on the friction coefficient. In a long term, the fatigue wear and abrasive wear were the predominant wear mechanisms for AM60B and delamination wear, adhesive wear and abrasive wear for AZ91D.  相似文献   

2.
The wear behavior of Al2O3–40% TiO2 and Cr2O3 deposited on a casting aluminum alloy (ASTM A356) by plasma spray against an SiC ball was investigated. It was found that the voids and porosities of the coating surface generated cracks. As the tensile stresses in the coating increased with an increased friction coefficient, the columnar grain of the coating fractured at the critical stress point. It was also found that the cohesiveness of the splats and porosity of the surface both played a role in the wear characteristics. It is suggested that the thermal expansion mismatch of the substrate and coating plays an important role in the wear performance. Tensile, compressive, and thermo-mechanical stress may also occur due to this same thermal expansion mismatch of the substrate and coating. Crack propagation above the interface was observed with a SEM. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Friction and wear characteristics of partially stabilized zirconia (PSZ) fretted against itself and against high carbon steel were investigated. The results for the transformation toughened PSZ ceramics are compared with the behaviour of more brittle alumina ceramic under the same test conditions. Fretting tests in air were carried out on a high frequency wear test rig at room temperature using a cross-cylinder configuration. It was found that both the oxide ceramics were more resistant to fretting wear than the steel. Surface cracking was observed on the alumina wear scars while microfracture and delamination dominated on the PSZ wear scars. When metallic samples were fretted against ceramics, metallic film transfer to the ceramic surfaces occurred.  相似文献   

4.
Hozumi Goto  Kenji Uchijo 《Wear》2004,256(6):630-638
Ball-against-disk type fretting wear tests for Al-Si alloy matrix composites in contact with bearing steel were conducted in wet air to investigate the effects of relative slip amplitude on friction and wear of the composites. In the larger range of relative slip amplitude, the Al-Si alloy-impregnated graphite composite (ALGR-MMC) shows lower friction coefficients than those of alumina short fiber-reinforced composite (ASFR-MMC) and hollow silica particle-reinforced composite (HSPR-MMC). Although the wear rate of the ALGR-MMC is higher than that of the ASFR-MMC and HSPR-MMC, the composite hardly causes damage to the mating material due to adhesion of compacted films of graphite powder and Al-Si alloy wear particles.  相似文献   

5.
Fretting wear tests were performed on the self-made fretting wear rig to investigate fretting wear behaviors of steel wires under friction-increasing grease conditions. The results demonstrated that the fretting regimes were dependent on displacement amplitudes and normal loads. The friction coefficient exhibited different variation trends in different fretting regimes. Friction-increasing grease changed the fretting running behavior and had a very good wear resistance for steel wires. Wear was slight in partial slip regime. Mixed regime was characterized by plastic deformation, fatigue cracks and abrasive wear. Slip regime presented main damage mechanisms of abrasive wear, fatigue wear and oxidation.  相似文献   

6.
Fretting fatigue strength estimation considering the fretting wear process   总被引:1,自引:0,他引:1  
In fretting fatigue process the wear of contact surfaces near contact edges occur in accordance with the reciprocal micro-slippages on these contact surfaces. These fretting wear change the contact pressure near the contact edges. To estimate the fretting fatigue strength and life it is indispensable to analyze the accurate contact pressure distributions near the contact edges in each fretting fatigue process.So, in this paper we present the estimation methods of fretting wear process and fretting fatigue life using this wear process. Firstly the fretting-wear process was estimated using contact pressure and relative slippage as follows:
W=K×P×S,
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号