共查询到20条相似文献,搜索用时 15 毫秒
1.
Fretting wear behavior of AZ91D and AM60B magnesium alloys 总被引:2,自引:0,他引:2
The fretting wear behavior of the AZ91D and AM60B magnesium alloys are investigated using a reciprocating fretting wear machine under dry conditions with different numbers of cycles, different normal loads, slip amplitudes and frequencies. The worn surfaces and wear debris were examined using scanning electron microscopy and optical microscopy in order to understand the predominant wear mechanisms of two magnesium alloys. The results indicate that the AZ91D alloy displays a lower friction coefficient and lower wear quantity than the AM60B alloy. The AZ91D shows a higher capability than AM60B in resisting crack nucleation and propagation. Both AZ91D and AM60B show similar friction and wear characteristics. The wear quantity increases with increasing normal load, but decreases with increasing frequency. The friction coefficient also decreases as the normal load is increased. Fretting frequency had little effect on the friction coefficient. In a long term, the fatigue wear and abrasive wear were the predominant wear mechanisms for AM60B and delamination wear, adhesive wear and abrasive wear for AZ91D. 相似文献
2.
The wear behavior of Al2O3–40% TiO2 and Cr2O3 deposited on a casting aluminum alloy (ASTM A356) by plasma spray against an SiC ball was investigated. It was found that
the voids and porosities of the coating surface generated cracks. As the tensile stresses in the coating increased with an
increased friction coefficient, the columnar grain of the coating fractured at the critical stress point. It was also found
that the cohesiveness of the splats and porosity of the surface both played a role in the wear characteristics. It is suggested
that the thermal expansion mismatch of the substrate and coating plays an important role in the wear performance. Tensile,
compressive, and thermo-mechanical stress may also occur due to this same thermal expansion mismatch of the substrate and
coating. Crack propagation above the interface was observed with a SEM.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
3.
Friction and wear characteristics of partially stabilized zirconia (PSZ) fretted against itself and against high carbon steel were investigated. The results for the transformation toughened PSZ ceramics are compared with the behaviour of more brittle alumina ceramic under the same test conditions. Fretting tests in air were carried out on a high frequency wear test rig at room temperature using a cross-cylinder configuration. It was found that both the oxide ceramics were more resistant to fretting wear than the steel. Surface cracking was observed on the alumina wear scars while microfracture and delamination dominated on the PSZ wear scars. When metallic samples were fretted against ceramics, metallic film transfer to the ceramic surfaces occurred. 相似文献
4.
Ball-against-disk type fretting wear tests for Al-Si alloy matrix composites in contact with bearing steel were conducted in wet air to investigate the effects of relative slip amplitude on friction and wear of the composites. In the larger range of relative slip amplitude, the Al-Si alloy-impregnated graphite composite (ALGR-MMC) shows lower friction coefficients than those of alumina short fiber-reinforced composite (ASFR-MMC) and hollow silica particle-reinforced composite (HSPR-MMC). Although the wear rate of the ALGR-MMC is higher than that of the ASFR-MMC and HSPR-MMC, the composite hardly causes damage to the mating material due to adhesion of compacted films of graphite powder and Al-Si alloy wear particles. 相似文献
5.
Fretting wear tests were performed on the self-made fretting wear rig to investigate fretting wear behaviors of steel wires under friction-increasing grease conditions. The results demonstrated that the fretting regimes were dependent on displacement amplitudes and normal loads. The friction coefficient exhibited different variation trends in different fretting regimes. Friction-increasing grease changed the fretting running behavior and had a very good wear resistance for steel wires. Wear was slight in partial slip regime. Mixed regime was characterized by plastic deformation, fatigue cracks and abrasive wear. Slip regime presented main damage mechanisms of abrasive wear, fatigue wear and oxidation. 相似文献
6.
In fretting fatigue process the wear of contact surfaces near contact edges occur in accordance with the reciprocal micro-slippages on these contact surfaces. These fretting wear change the contact pressure near the contact edges. To estimate the fretting fatigue strength and life it is indispensable to analyze the accurate contact pressure distributions near the contact edges in each fretting fatigue process.So, in this paper we present the estimation methods of fretting wear process and fretting fatigue life using this wear process. Firstly the fretting-wear process was estimated using contact pressure and relative slippage as follows:
W=K×P×S,