首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
In grinding process, the abrasives plunge and slide against the workpiece during material removal with high specific energy consumption and high grinding zone temperature. To improve process efficiency, lubrication becomes an important requirement of the grinding fluids, along with chip removal and cooling the grinding zone. Grinding fluids have negative influences on the working environment and machining cost in terms of the health of the machine operator, pollution, the possibility of explosion (for oil), filtering, and waste disposal. The use of minimum quantity of lubrication (MQL) with an extremely low consumption of lubricant has been reported as a technologically and environmentally feasible alternative to flood cooling. This paper deals with an investigation of the grindability of hardened stainless steel (UNS S34700) and aluminum alloy AA6061 using dry, MQL, and conventional fluid techniques. One type of SiC and five types of Al2O3 wheels (corundum) as well as vegetable and synthetic ester MQL oils have been tested. The influences of wheel and coolant–lubricant types have been studied on the basis of the grinding forces, surface topography, and surface temperature. Synthetic ester MQL oil was found to give better grinding performance than the vegetable MQL oils. It was argued that the improved performance of the ester oil is caused by the formation of tribo-films on the abrasives and the workpiece, which enhances lubrication by inhibiting metal–abrasive interaction. Also, the grindability of the machined specimens was found to increase substantially by using the MQL grinding process with soft and coarse wheels. In MQL grinding of AA6061 alloy, the use of vegetable oil resulted in the lowest surface roughness, whereas using synthetic ester additives lead to highest surface roughness because of higher chip loading on the grinding wheel and consequently more redeposited material on the workpiece surface.  相似文献   

2.
When considering machinability parameters, the use of coolant is indispensable in metal cutting operations. However, stricter environmental regulations are making the use of an ample amount of conventional coolant impossible because of its negative impact on the environment. Consequently, the use of minimal quantities of lubricant (MQL) can be regarded as an alternative solution in which the functionality of cooling and lubrication can be achieved by a tiny amount of cutting oil. In this study, flood coolant (42 l min _1) was used compared to the MQL amount of 8.5 ml h_1 and the comparative effectiveness was investigated in terms of cutting force, tool wear, surface roughness, and chip shape. Unlike the catastrophic tool failure in flood cooling, the use of MQL resulted in the cutting edge remaining intact, in spite of a higher flank width. The findings of this study show that MQL may be considered to be an economical and environmentally compatible lubrication technique.  相似文献   

3.
The minimum quantity of lubrication (MQL) technique is becoming increasingly more popular due to the safety of environment.Moreover,MQL technique not only leads to economical benefits by way of saving ...  相似文献   

4.
F. Itoigawa  T.H.C. Childs  W. Belluco 《Wear》2006,260(3):339-344
Effects and mechanisms in minimal quantity lubrication are investigated by use of an intermittent turning process. Especially a difference between minimal quantity lubrication (MQL) and MQL with water is inspected in detail to elucidate boundary film behaviour on the rake face. In order to obtain a good cutting performance by MQL it is considered that two things are needed: (1) an appropriate lubricant, such as a synthetic ester, to form a strong boundary film and (2) a chilling effect to sustain strength of the boundary film.  相似文献   

5.
为探讨自乳化酯作为全合成切削液主润滑剂的可能性,以聚醚、四聚蓖麻油酸酯、自乳化酯为润滑剂调配了不同的合成切削液;采用四球抗磨试验机以及攻丝扭矩试验机、液体循环泡沫试验机,考察3种润滑剂在全合成切削液中的润滑性能、抗磨性能及抗泡性能.结果 表明:自乳化酯能有效提高全合成切削液的润滑性能和抗磨性能,其润滑性能及抗磨性能与四...  相似文献   

6.
Titanium and its alloys are attractive materials due to their unique high strength–weight ratio that is maintained at elevated temperatures and their exceptional corrosion resistance. The major application of titanium has been in the aerospace industry. On the other hand, titanium and its alloys are notorious for their poor thermal properties and are classified as difficult-to-machine materials. The problems that arise during grinding of titanium alloys are attributed to the high specific energy and high grinding zone temperature. Significant progress has been made in dry and semidry machining recently, and minimal quantity lubrication (MQL) machining in particular has been accepted as a successful semidry application because of its environmentally friendly characteristics. A number of studies have shown that MQL machining can show satisfactory performance in practical machining operations. However, there has been few investigation of MQL grinding of special alloys like titanium alloys and the cutting fluids to be used in MQL grinding of these alloys. In this study, vegetable and synthetic esters oil are compared on the basis of the surface quality properties that would be suitable for MQL applications. The cutting performance of fluids is also evaluated using conventional wet (fluid) grinding of Ti–6Al–4V. As a result, synthetic ester oil is found to be optimal cutting fluids for MQL grinding of Ti–6Al–4V.  相似文献   

7.
In this study, the lubrication and cooling properties of eco-friendly graphite nanofluids in MQL grinding were investigated. Grinding forces, subsurface temperature of workpiece, surface roughness, micro-hardness and metallographic observations of ground surfaces were employed to evaluate the performance of synthesized nanofluids as lubricant under different grinding parameters. The results were also compared with grinding in dry, pure MQL and flood cooling conditions. The results showed that the tangential forces and force ratios in grinding using graphite nanofluid MQL are lower than that of other lubricating methods especially at extreme cutting parameters. Also, application of graphite nanofluid MQL reduced the grinding temperature at high velocities of workpiece. These reductions could be attributed to the formation of a tribofilm on the ground surface by the present of graphite nanoparticles in the wheel-workpiece interface. Additionally, the presence of this tribofilm in the contact area generated a smooth surface even at high depth of cut and velocity of workpiece. Furthermore, the micro-hardness of ground surfaces increased in graphite nanofluid MQL grinding because of infiltration of graphite nanoparticles in the grinding surface and the plastic deformation of subsurface of workpiece.  相似文献   

8.
The machining of stainless steels is very challenging owing to their high toughness and low thermal conductivity, causing high cutting temperatures and rapid tool wear. Conventionally, metalworking fluids in flood form are used during the process to improve surface quality and tool life; however, their use raises issues including environmental pollution and economic concerns. Therefore, an electrostatic minimal quantity lubrication (EMQL) technology was developed to reduce the consumption of metalworking fluids. EMQL is a near-dry machining technology utilizing the synergetic effects between electrostatic spraying and minimum quantity lubrication (MQL), wherein the lubricant is to apply in a form of fine, uniform and highly penetrable and wettable mist droplets directly to the cutting zone. This study investigates the effect of EMQL in end milling of AISI 304 stainless steel in comparison with dry, wet and MQL machining. The results suggest that EMQL reduces tool wear and cutting force, prolongs tool life considerably and enhances surface finish compared with conventional wet and MQL machining. scanning electron microscopy and Energy-dispersive X-ray spectroscopy analyses show that EMQL considerably reduces adhesive and abrasive wear on the flank face because of the lower friction and heat generation resulting from more efficient entry of the lubricant into the cutting interfaces.  相似文献   

9.
微量润滑切削加工性能影响因素的研究   总被引:1,自引:1,他引:0  
介绍了微量润滑(MQL)切削加工技术相对于传统湿式和干式切削的应用优势及应用现状,重点分析了MQL油雾供给与混合系统、润滑油、压缩空气、工件材料、刀具以及切削参数等因素对MQL切削加工性能的影响规律,发现在加工条件确定的情况下,润滑油用量、压缩空气压力和切削参数之间存在最优组合。因此,为了充分发挥MQL切削加工技术的应用优势,必须对MQL工艺系统进行全面而精确的优化。  相似文献   

10.
Minimum Quantity Lubrication (MQL) machining involves the application of a minute amount of an oil-based lubricant to the machining process in an attempt to replace the conventional flood coolant system. Understanding the correlations between fluid properties and MQL performance can help in selecting lubricants from a variety of choices without going through extensive machining tests. This study compared nine different MQL fluids in terms of their physical properties, wettability, tribological properties (lubricity and extreme pressure (EP) properties), mist characteristics and machinability to determine the correlation of measured properties and MQL drilling and reaming performance. Results show that low fluid viscosity, high mist concentration, large mist droplet diameter and high wettability were best correlated with good machinability. Although it is difficult to draw strong relationships, the optimal machining in a mild cutting condition was found with the low viscosity fluids, which may also have the highest mist concentration, largest drops and best wettability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号