首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
随着高压直流输电技术的发展和国产化饱和电抗器的大量投用,饱和电抗器的安全问题和寿命特性日益引起关注。在换流阀开通瞬间饱和电抗器绕组内电流会发生突变,并在绕组上感生出微秒级脉冲高压,饱和电抗器匝间绝缘长期承受脉冲电压应力的作用。目前,仍无法对该脉冲电应力进行实际测量,因此微秒级脉冲电压对饱和电抗器绝缘的作用机理仍无定论。故文中以锦屏—苏南±800 kV/4 750 A高压直流输电工程整流侧A5000换流阀用饱和电抗器为研究对象,基于饱和电抗器实际结构尺寸和端口电压、电流波形实测数据,通过脉冲传输理论和分布参数等效电路计算了饱和电抗器在脉冲电压作用下的匝间电压分布,并通过有限元方法研究了瞬态电场分布。结果表明:微秒级脉冲电压在饱和电抗器绕组内分布不均匀,首匝线圈电压比其他匝高出14%;瞬态电场峰值约2.08 kV/mm,电场最强的点的物理位置贴近线圈表面。  相似文献   

2.
针对脉冲电磁场生物医学应用中高电压大电流宽范围脉冲的应用需求,设计了一种多匝直线型变压器驱动源(LTD)。该LTD脉冲发生器的磁心采用多匝绕制的方式,可输出宽脉宽的脉冲。设计了各级LTD模块同向绕制的驱动供电及储能充电隔离方式,各级磁心隔离电压为LTD模块的工作电压。多匝LTD脉冲发生器共由10级LTD模块组成,各级LTD模块由18个储能电容及MOSFET放电开关并联,并设计了其同步驱动电路。通过对各主要器件的型号进行分析筛选,研制了模块化紧凑型多匝LTD全固态脉冲源样机,可输出脉冲参数为:电压幅值0~5kV,输出脉冲电流高达500A,脉冲宽度200ns~5μs,上升沿30ns,下降沿16ns,其脉冲宽度、幅值等参数均灵活可调,并且可通过增加LTD模块的数量,实现更高电压的脉冲输出。  相似文献   

3.
查鲲鹏  王高勇  周军川  彭玲  高冲 《高电压技术》2012,38(11):3074-3079
高压直流输电(HVDC)换流阀单阀非周期触发试验是换流阀绝缘型式试验中的难点。按照IEC 60700-1标准要求,通过对实际应力的分析及试验电路拓扑的设计,给出了满足工频补能型换流阀要求并可兼容换流阀抗电磁干扰试验的试验电路。在上述研究的基础上,顺利完成了宁东-山东直流输电工程±660kV HVDC换流阀的非周期试验,复现了工程中的非周期触发电压、电流应力。试验电压峰值达685kV,电流峰值为8.1kA,最大电流变化率达到1.4kA/μs,均满足实际工程中非周期触发试验应力的要求,并考验了换流阀的电流和电压耐受能力。试验结果表明宁东工程换流阀能够耐受规定的非周期触发应力。该试验电路设计合理,准确反映了晶闸管导通后前10μs的电压、电流应力,并实现了各强应力源μs级的时序配合。  相似文献   

4.
一种采用全固态开关的高压双极性脉冲源   总被引:1,自引:0,他引:1  
为满足高压脉冲电场灭菌实验的需要,提出一种结合经典Marx发生器与全固态开关器件的高压双极性方波脉冲源设计方案。选用全固态开关器件替代传统的火花间隙开关,以单极性Marx发生器为核心,实现能量压缩,通过全桥固态调制器可实现高压方波脉冲的双极性输出。详细分析了电路的结构、工作过程、控制策略和负载适应能力。以全固态IGBT为主开关器件,研制了脉冲源的高压主回路部分;设计了相应的控制电路和开关同步触发电路,通过光纤和隔离供电模块实现了信号传输和强弱电的隔离。相比于常规的双极性高压脉冲源,该方案具有更简洁的电路结构和良好的负载适应能力,实现了输出脉冲极性可控、前沿更陡,脉冲频率、脉宽、电压幅值可调等优点。实验结果表明,该脉冲源系统可以产生幅值范围-7~7 k V、每秒脉冲数1~1 000、脉宽范围2~10μs、极性可变的高压方波脉冲,为开展高压脉冲电场灭菌实验,寻找最佳灭菌电参数条件,提供了硬件支持。  相似文献   

5.
为满足高压脉冲杀菌灭藻实验的需求,研制了一种新型极性可调方波高压脉冲电源。该电源前端为半桥式Marx电路,产生单极性重复频率的方波高压脉冲,后端级联一个H桥,通过控制H桥正、负向放电通道开闭的不同时序实现对高压脉冲极性的调节。本文对拓扑结构设计思路、不同负载时的工作原理和开关控制策略进行了阐述和分析,并利用PSIM软件仿真验证了该脉冲源设计方案的正确性。最后,研制了脉冲源样机,经测试证明,该脉冲源所采用的IGBT浮地驱动技术安全可靠,其最大输出电压达±7k V,输出电流达±10A,脉冲数达1kpps,额定输出时上升沿可达160ns,脉宽3.5μs,且能在阻性、容性、感性等各类负载下正常工作,并易于实现电压、频率、脉宽、极性的调节,易于实现模块化和小型化。  相似文献   

6.
为了探索脉冲电应力作用下高压绝缘栅双极型晶体管(IGBT)器件绝缘材料的局部放电特性,建立高频高压脉冲作用下的局部放电测量平台,系统研究了电压幅值、脉冲重复频率、上升沿时间和脉宽对聚酰亚胺薄膜局部放电特性的影响规律。结果表明:随着电压幅值从3 kV增加至11 kV,脉冲上升沿处的局部放电信号幅值逐渐增大,而放电时延逐渐减小;随着脉冲重复频率从50 Hz增大至100 kHz,上升沿的放电时延逐渐增大但局部放电信号幅值几乎不变;随着上升沿时间从136 ns增大至300 ns,放电时延逐渐增大且更加分散,局部放电信号幅值逐渐减小且更加紧密;与脉宽为1μs的情况相比,脉宽为500 ns时局部放电信号幅值更大且放电时延更小。该结果可为高压大功率电力电子装置中固态开关的绝缘老化和状态监测提供重要科学依据。  相似文献   

7.
饱和电抗器是高压直流(HVDC)换流阀的重要组成部分,是保护晶闸管的主要器件,其电路模型参数是换流阀优化设计的关键.饱和电抗器电路模型可以等效为空载变压器,即非线性电感及非线性等效电阻的并联.由于采用理论计算的饱和电抗器特性参数值,其电路仿真波形与试验波形总存在较大的偏差,这里利用冲击放电试验对饱和电抗器特性参数进行建模,将非线性电感等效为主磁通受控的电流源模型,利用冲击放电试验及电路状态方程求取饱和电抗器非线性等效阻抗.通过对比分析不同电压等级冲击放电试验的仿真结果与试验结果,基本验证了饱和电抗器特性参数模型的有效性.  相似文献   

8.
通过对阳极饱和电抗器的绝缘耐受试验回路和试验方法进行研究,精确、可靠地对ETT(电触发晶闸管)、LTT(光触发晶闸管)换流阀用阳极饱和电抗器进行了以1次/s的速率持续8 h施加冲击电压的绝缘耐受试验。试验结果为超、特高压直流工程换流阀的设计提供了可靠的计算数据和设计依据,供工程技术人员参考。  相似文献   

9.
直流输电换流阀的电压分布性能是其重要电气特性之一。它不但影响换流阀的可靠性,甚至也影响阀的成本。而电压性能的计算不但与分析方法有关,也受电路模型精确度的影响。针对±800kV/4750A特高压换流阀建立宽频电路模型,试验和仿真结果表明所建的宽频模型是可行的,并具有较高的精确度。此外,也就电路元件参数和杂散电容对该特高压换流阀电压分布的影响进行分析,并总结其中的关键因素。结果表明对于阀的电压分布性能来说,饱和电抗器设计和阀层对地杂散电容尤为重要。  相似文献   

10.
为分析特高压直流输电工程中,逆变侧换流阀饱和电抗器的电气应力及损耗特性,建立了带反向恢复特性晶闸管模型和非线性饱和电抗器模型的高压直流输电逆变侧12脉动换流阀仿真模型。以锦屏—苏南±800kV/4 750 A直流输电工程使用的A5000换流阀为基础,计算了A5000换流阀工作在逆变状态时的电气应力和饱和电抗器损耗。结果表明,逆变侧换流阀承受较高的开通电压,电抗器的开通损耗远高于整流侧。但由于逆变侧换流阀承受较低的关断应力与断态应力,逆变侧的饱和电抗器损耗与整流侧总体相当。A5000换流阀可以在逆变状态下安全运行。  相似文献   

11.
《高压电器》2017,(11):46-50
随着高压直流输电换流阀自主化的推进,换流阀饱和电抗器逐步实现了国产化并在工程中应用。为了进一步研究换流阀饱和电抗器的性能,文中结合某型式的±500 kV换流阀饱和电抗器,对饱和电抗器的水压耐受能力、直流损耗、饱和特性、温升水平、故障电流耐受能力及冲击电压下的阻抗特性等进行了研究,并将国产和进口饱和电抗器的各项性能进行了对比。结果显示,目前国产饱和电抗器的性能与进口电抗器并无差异,且部分性能指标优于进口电抗器,这既是国内厂家依托工程逐步提高的结果,也表明该型式的国产饱和电抗器的整体性能已达到国际先进水平,研究结果对后续特高压换流阀饱和电抗器的研制具有指导和借鉴意义。  相似文献   

12.
高压脉冲电源是产生放电等离子体及其应用于生物医学、材料表面处理及流动控制的重要激励源.基于单极性Marx电路与脉冲变压器相结合的思路,利用脉冲变压器的电压波形过冲现象,开发了一台高频高压纳秒脉冲电源样机.该电源样机输出电压幅值最高可达21 kV,频率最高达16 kHz,上升沿和下降沿分别约为145 ns和215 ns,脉宽约为250 ns;输出平均功率为125W以内时,整机效率高于80%.该脉冲电源的输出电压、频率等参数连续可调且体积较小.上述研究为开发应用于放电等离子体的高压脉冲电源提供重要参考.  相似文献   

13.
HVDC整流侧阀饱和电抗器铁损仿真研究   总被引:1,自引:0,他引:1  
建立了用以研究直流输送电流对饱和电抗器铁心损耗影响的,包含带反向恢复特性的晶闸管模型与非线性饱和电抗器模型的12脉动高压直流输电换流阀仿真模型,其中饱和电抗器模型是由非线性电阻模型与受控电流源并联构成的。以锦屏—苏南±800 kV/4 750 A高压直流输电工程整流侧使用的A5000换流阀为例,仿真了3组不同直流线路电流条件下饱和电抗器铁心损耗,仿真结果与现场实测数据相符。饱和电抗器的铁损不仅包括换流阀开通时产生的铁损,在换流阀关断以及断态时也会产生铁损。饱和电抗器铁损随直流电流的升高而增加。  相似文献   

14.
换流阀内可控硅端电压特性分析和缓中电路参数优化   总被引:3,自引:0,他引:3  
换流阀内可控硅端电压分布特性取决于可控硅器件性能和相应的缓冲电路参数.用一个较实际的可控硅宏模型,对换流阀内的一个可控硅模块与饱和电抗器的串联电路进行动态仿真,分析可控硅并联的缓冲电路参数对换流阀内电压分布特性的影响及换流时换流阀内电压振荡特性;给出缓冲电路参数优化的趋势.  相似文献   

15.
《高电压技术》2021,47(3):778-785
针对等离子体及其应用对于高可靠性、小型化高压重频脉冲电源的需求,研制了一种基于感应叠加原理的模块化脉冲电源。该脉冲电源采用绝缘栅门极晶体管(insulated gate bipolar translator,IGBT)作为主开关,基于脉冲变压器升压和感应叠加原理实现多个单元模块的脉冲电压叠加,从而获得高压短脉冲。首先基于PSpice软件验证该拓扑结构的可行性并为元件选型提供理论指导,最终研制出基于感应叠加原理的脉冲电源的样机,其输出脉冲参数为:幅值为0~15 kV可调,重复频率为1~10 kHz可调,脉宽为5~7μs。脉冲电源采用模块化设计,在保证各模块之间绝缘的前提下,可以通过增加模块数量方便地提高最大输出电压。依托该脉冲电源开展介质阻挡放电(dielectric barrier discharge,DBD)等离子体试验,验证了该脉冲电源产生等离子体的可靠性。  相似文献   

16.
换流阀内可控硅端电压特性分析和缓冲电路参数优化   总被引:1,自引:0,他引:1  
换流阀内可控硅端电压分布特性取决于可控硅器件性能和相应的缓冲电路参数。用一个较实际的可控硅宏模型,对换流阀内的一个可控硅模块与饱和电抗器的串联电路进行动态仿真,分析可控硅并联的缓冲电路参数对换流阀内电压分布特性的影响及换流时换流人电压振荡特性;给出缓冲电路参数优化的趋势。  相似文献   

17.
换流阀内可控硅端电压分布特性取决于可控硅器件性能和相应的缓冲电路参数。用一个较为实际的可控硅宏模型,对换流阀内的一个可控硅模块与饱和电抗器的串联电路进行了动态仿真,分析了可控硅并联的缓冲电路参数对换流阀内电压分布特性的影响,以及换流时换流阀内电压振荡特性,并给出了缓冲电路参数优化的趋势。  相似文献   

18.
针对不同应用领域中负载阻抗的多样性,研制一种基于Marx和直线型变压器驱动源(LTD)拓扑的复合模式脉冲源。该脉冲源包含4个LTD模块,且每个LTD模块由1个3级Marx电路组成。其主要优点是可以降低对隔离电源模块、触发同步性的要求,负载适应能力强,并且可使脉冲装置小型化。首先对该脉冲源拓扑结构和参数进行设计和理论计算,并采用PSpice软件验证其可行性,最后研制复合模式脉冲源的样机并测试其性能。该脉冲源采用MOSFET作为主开关,二极管作为隔离元件,用含锁相环功能的现场可编程门阵列(FPGA)产生控制信号。该脉冲源的输出脉冲参数:幅值为0~8 kV,脉宽为60~160 ns,脉宽步进可达1 ns,重复频率为1 kHz,上升沿约10 ns。通过FPGA产生相移控制信号对该脉冲源的每级进行单独控制,可实现对输出脉冲上升沿和下降沿的灵活调节。脉冲源采用模块化设计,可以通过增加模块数量方便地提高最大输出电压。  相似文献   

19.
饱和电抗器作为晶闸管换流阀的核心部件,主要用于抑制电流变化率、在高频电压冲击下分摊硅堆电压以及均衡换流阀电压分布的作用。西门子技术饱和电抗器结构复杂、水路接口多,随运行时间增加,工程中已多次出现漏水、二次电缆磨损、铁心硅钢片脱落、母排发热等问题,严重影响了直流系统安全稳定运行。文中以解决上述问题为目标,提出了一种用于工程改造替换进口电抗器的方形壳体式饱和电抗器设计方案,从饱和电抗器的关键参数设计、结构设计、水路设计和试验4方面,介绍了新型饱和电抗器的技术特点、性能指标和试验情况。该型饱和电抗器已在中国贵广和向上等直流工程中实现进口电抗器的批量替换,性能稳定,运行情况良好。同时也为后续新的高压直流工程换流阀设计提供了一种新的电抗器方案。  相似文献   

20.
±660kV直流输电工程换流阀绝缘试验研究   总被引:2,自引:0,他引:2  
宁东-山东±660 kV直流输电工程是世界上第1个采用660 kV电压等级的直流工程,该工程采用单12脉动换流阀结构,单阀跨接电压高,阀塔尺寸较大,对换流阀试验提出了极高的要求.文章对换流阀绝缘试验项目和实际试验参数进行全面介绍,并对绝缘试验中遇到的难点以及解决方案进行了重点阐述.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号