首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对生产实际中标注故障数据不足的问题,提出了基于深度学习与子域适配的齿轮故障诊断方法。首先构建域共享的一维卷积神经网络,从故障数据中提取可迁移特征;然后采用多核局部最大均值差异来测量可迁移特征相关子域的分布差异,并将测得的分布差异加入目标函数中训练;最后将训练完成的模型用于目标域健康状态的识别。实验结果表明,所提方法能在无标签目标域数据的情况下得到较高的准确率。  相似文献   

2.
由于在工程实际中采集的故障振动数据分布不同且难以标记,使得卷积神经网络(convolutional neural network,简称CNN)在故障诊断过程中难以发挥最佳作用。针对此问题,提出了一种基于一维卷积神经网络迁移学习的滚动轴承故障诊断方法。首先,建立了可直接处理轴承振动信号的一维卷积神经网络模型并使用源域数据对其进行预训练;其次,利用最大均值差异(maximum mean discrepancy,简称MMD)度量源域和目标域在预训练模型中各层上的特征分布距离,并通过MMD判断卷积层和全连接层能否迁移,若不能迁移则使用初始化方式补全模型;最后,使用少量标记的目标域数据再次训练模型,进而对目标域故障数据进行分类辨识。利用故障轴承数据对方法有效性进行验证,结果显示,该方法在目标域只有少量标签的情况下能够实现变工况滚动轴承故障分类,并达到较高的诊断准确率。  相似文献   

3.
一维振动信号常常被用于齿轮箱的监测与故障诊断中,使得能及时地对齿轮箱维护以减少损失。因此,从一维振动信号中提取出关键故障特征决定了故障诊断模型的准确性与可靠性。典型的深度神经网络(deep neural network, DNN),如卷积神经网络已经在故障诊断中表现出良好的性能并得到了广泛的应用,但其监督式训练方式往往需要大量的标签数据而限制了其可应用性。因此,提出一种新的深度神经网络模型,一维残差卷积自编码器(1-dimension residual convolutional auto-encoder,1DRCAE),成功应用于振动信号的无监督学习及故障特征提取,显著提高了齿轮箱的故障诊断率。首先,提出了一维卷积层与自编码器的有效集成方法,形成了深度一维卷积自编码器;其次,引入残差学习机制训练一维卷积自编码器,实现对一维振动信号有效地特征提取;最后,基于编码器提取的特征,使用少量标签数据进行分类微调实现齿轮箱故障模式识别。通过齿轮箱试验台采集的传感器数据进行实验验证表明,这种无监督学习方法具有良好的去噪能力和故障特征提取能力,其特征提取效果好于典型的深度神经网络,如深度置信网络(Deepbeliefnetwork,DBN)和堆叠自编码网络(Stackedauto-encoders,SAE),同时故障诊断效果也优于一维卷积神经网络(1-dimension convolutional neural network, 1DCNN)。  相似文献   

4.
基于增强迁移卷积神经网络的机械智能故障诊断   总被引:1,自引:1,他引:0  
现有的基于深度迁移学习的智能诊断方法通常对源域和目标域特征对齐来减少两者分布差异,没有考虑源域类别决策边界对目标域特征匹配的影响,针对此不足,提出了一种增强迁移卷积神经网络(Enhanced transfer convolutional neural network,ETCNN)来改进机械设备在变工况下的诊断精度和泛化能力。为充分利用标签信息和提取高维特征,构建卷积神经网络和两个独立的分类器对源域数据分别训练,用于检测远离决策边界的目标域样本。为有效减少不同决策边界处样本的误匹配,进一步构建分类损失函数和分类器判别损失函数,并引入对抗训练策略,最大两个分类器的分类差异,同时最小化源域与目标域特征分布差异,实现目标域样本与源域样本自适应匹配,从而有效改进故障的分类性能。在滚动轴承数据集上对所提方法进行充分评估,并与其他三种深度迁移学习方法:域适配网络(Domain adaptive network,DAN),多层域适配网络(Multi-layer DAN,MLDAN),以及深度对抗卷积神经网络(Deep adversarial convolutional neural network,DACNN)进行充分比较,结果表明,所提方法不仅具有良好的分类能力和泛化能力,同时明显优于其他方法。  相似文献   

5.
针对行星齿轮箱故障振动特征需要预处理、识别困难以及诊断模型收敛速度较慢的问题,提出基于集成卷积神经网络的行星齿轮箱智能故障诊断方法。首先,采用一维卷积对齿轮的原始时域振动信号提取特征,之后通过采用两个弱分类器,根据弱分类学习错误率的性能更新样本权重,调整权重后根据训练集训练弱分类器。重复此过程,最后通过设置策略整合弱分类器,形成集成卷积神经网络;建立一个稳定用于行星齿轮箱的智能故障诊断的模型。实验结果表明:集成卷积神经网络能很好地对行星齿轮原始振动信号进行快速诊断。相对于传统卷积神经网络对齿轮原始时域振动故障信号的诊断具有更强的辨识能力和更快的收敛速度;所建立的智能诊断模型可以有效地诊断齿轮不同的故障状态。  相似文献   

6.
深度学习类轴承故障智能诊断研究中,一般会假设训练数据与测试数据同分布且典型故障样本充足,而实际工况复杂多变,难以获得大量标签数据。将残差学习引入卷积自编码,并结合迁移学习,提出了基于残差卷积自编码无监督域自适应迁移的故障诊断方法。堆叠一维卷积自编码进行特征提取,通过残差学习避免过拟合,提高学习效率;融合多层多核概率分布适配来约束网络学习域不变特征;实现了基于无监督域自适应迁移学习的故障诊断,并获得了较高准确率的识别结果。采用凯斯西储大学轴承数据集进行验证,结果证明了所提出方法的有效性,此外还对主要参数及其影响进行了探讨并给出了对比结果。  相似文献   

7.
现阶段基于深度学习的故障诊断需要大量的数据,而制作数据集是一项耗时耗力的工作。针对这一缺点,提出一种基于门控循环单元(Gate Recurrent Unit,GRU)与迁移学习的滚动轴承故障诊断方法。该方法利用与目标域特征相似且易获得源域数据的特点训练网络,确定网络结构和参数,冻结经过训练的卷积神经网络(Convolutional Neural Networks,CNN)和GRU,用小样本目标域数据训练该网络,微调全连接层和分类层,达到迁移的目的。实验对比分析表明,基于GRU与迁移学习的滚动轴承故障诊断方法明显优于基于BP神经网络和基于概率神经网络(Probabilistic Neural Network,PNN)方法的故障诊断,能够更加准确地进行故障分类,为小样本数据集下的故障诊断提出了新思路。  相似文献   

8.
对于智能故障诊断方法,大量有标签数据是实现智能模型训练的必要条件,但该条件在部分工业应用场景下难以满足。难以采集足够有标签数据,尤其是故障状态下的数据,在一定程度上限制了智能故障诊断方法的工业化应用。为解决该问题,提出基于特征知识迁移的机械设备智能故障诊断方法,将实验设备或其他相关设备所采集的足量有标签数据所蕴含的特征知识迁移至工业现场设备所部署的智能模型中,完成不同机械设备之间监测数据的特征知识迁移,从而实现无标签数据下的机械设备智能故障诊断。提出方法首先构建一维深度卷积神经网络,实现从原始振动信号到机械设备故障类别的深度映射。然后在深度卷积神经网络中加入领域适配正则约束项,实现不同机械设备监测数据间特征知识的深度迁移适配。最后,通过全连接神经网络进行机械设备健康状态的识别。为验证提出算法的有效性,通过两种机械设备的轴承在不同性能状态下所采集的监测数据进行迁移故障诊断实验,实验结果表明:提出方法实现了不同设备间监测数据特征知识的迁移适配;相对于传统智能诊断方法,提出的方法在两个数据集之间的迁移故障诊断识别率提高20%以上。  相似文献   

9.
旋转机械复合故障与单一故障样本间相关性高易造成错分类,且旋转机械转速往往不同,进一步加剧了旋转机械复合故障诊断的难度。针对上述问题,提出一维深度子领域适配的不同转速下旋转机械复合故障诊断方法。首先,以旋转机械复合故障的频域信号作为网络的输入,最大程度保留信号特征;其次,搭建领域共享的一维卷积神经网络,对不同转速下旋转机械复合故障的频域信号特征进行学习;然后,添加局部最大均值差异形成子领域适配层,对齐每对子领域分布以避免单一故障和复合故障的特征混合,并通过最小化局部最大均值差异值缩小两域子领域特征分布差异,以减少不同转速所带来的干扰;最后,在子领域适配层后添加softmax分类层,实现对目标数据的故障状态识别。通过不同转速旋转机械复合故障诊断实验证明了所提方法的有效性。  相似文献   

10.
针对传统滚动轴承故障诊断方法过度依赖专家经验和故障特征提取困难的问题,结合深层神经网络处理高维、非线性数据的优势,提出了一种基于深层小波卷积自编码器(DWCAE)和长短时记忆网络(LSTM)的轴承故障诊断方法。首先构造了小波卷积自编码器(WCAE),改进了其损失函数,并加入了收缩项限制防止网络过拟合;其次将多个WCAE堆叠构成DWCAE,利用大量无标签样本对DWCAE进行了无监督预训练,挖掘出更有利于故障诊断的深层特征;最后利用深层特征训练LSTM网络,从而建立了诊断模型。仿真信号和实验数据分析结果表明:该方法能有效地对轴承进行多种故障类型和多种故障程度的识别,特征提取能力和识别能力优于人工神经网络、支持向量机等传统方法及深度信念网络、深层自编码器等深度学习方法。  相似文献   

11.
分别建立了基于快速傅里叶变换和深度置信网络的FFT-DBN模型、基于小波变换和深度卷积神经网络的WT-CNN模型以及基于希尔伯特-黄变换和深度卷积神经网络的HHT-CNN模型,通过将3种深度学习模型有机融合,进一步构建了基于深度学习理论的齿轮系统故障诊断综合评判模型。通过搭建功率封闭齿轮系统振动测试试验台,加工不同故障模式的测试齿轮副并提取其振动加速度信号作为样本,将基于深度学习理论的综合评判模型的故障识别效果与其他模型进行了对比。结果表明,基于深度学习理论的综合评判模型能够有效地辨识出多种齿轮故障;与其他模型相比,基于深度学习理论的综合评判模型的故障识别准确度更高。  相似文献   

12.
为了实现变设备、变工况条件下的轴承故障精确识别,提出了基于域自适应迁移深度卷积神经网络的诊断方法。对于具有不同分布特征(即不同域)的训练集和测试集,在深度卷积神经网络中构造了故障特征提取模块、域识别模块、标签分类模块,以特征提取模块与域识别模块对抗训练的方式实现域自适应迁移能力,使深度卷积神经网络能够有效提取不同域的共同特征参数。使用凯斯西储大学和智能维护系统中心数据设计了4组迁移实验,传统深度卷积神经网络的识别精度均值为64.5%,域自适应迁移卷积神经网络的识别精度均值为94.9%,充分说明了域自适应迁移深度卷积神经网络能够有效识别变设备、变工况条件下的轴承故障。  相似文献   

13.
准确提取振动信号特征,是齿轮故障诊断的关键问题。为此,提出了一种基于S变换能量分布特征和SVM的故障诊断方法。首先对齿轮故障信号进行S变换得到时频矩阵,然后利用该矩阵构建能量分布特征。最后建立SVM齿轮故障识别模型,将对应的特征样本输入到模型中进行训练和识别,以达到对齿轮故障的准确分类。将所提出的方法应用于齿轮故障检测和诊断。通过实际故障实验数据对所提方法进行了验证。结果表明,该方法能够有效地降低噪声的影响,能够准确地识别齿轮故障,具有较高的准确率和使用价值。  相似文献   

14.
为了解决传统水果图像分类识别算法人工提取特征的缺陷,将卷积神经网络应用到水果图像识别上,基所创建的数据集,参照经典的卷积神经网络模型Le Net-5结构,提出更适合本数据集的卷积神经网络结构,首先对水果数据集进行分类标签,将苹果、梨、橙子、橘子、桃子分别标记为0、1、2、3、4,然后将图片分批次投入模型训练,该模型构建了一个输入层、两个卷积层、两个池化层、两个全连接层和一个输出层。卷积神经网络通过底层提取特征,再进一步更深层次提取特征,最后得到目标的分类。实验结果表明,所提出的卷积神经网络结构不仅在数据集上取得了较高的识别准确率,而且与传统的水果图像分类识别算法相比较,卷积神经网络避免了人工提取特征的繁琐过程。  相似文献   

15.
提出了一种基于辅助分类生成对抗网络的功率变换器参数性故障智能诊断方法。首先采集功率变换器的测点电压与支路电流信号,提取信号的时域特征,构成故障特征向量。采用对抗学习机制训练生成器和判别器,由ACGAN中生成器构造与真实故障特征分布近似的伪数据,从而将伪数据与真实数据同时用于训练判别器,判别器通过判别真伪数据来训练生成器。以Buck变换器为例,验证了所提出的故障诊断方法的可行性,结果表明ACGAN故障诊断方法相对于传统神经网络具有更高的故障诊断率与更优的泛化性能。  相似文献   

16.
充足的故障样本是基于深度学习的故障诊断方法取得良好效果的保证。然而,数据不平衡是工业大数据的典型特征。为了减小智能诊断方法对样本数量的依赖,同时为了解决小样本下同种设备以及不同设备间的故障诊断问题,提出了一种基于一维卷积生成对抗网络(1D-DCGAN)与一维卷积自编码器(1D-CAE)的轴承故障诊断方法。首先,利用一维卷积层构建了1D-DCGAN网络,凭借其强大的数据生成能力扩充了故障数据集;然后,利用一维卷积层构建了1D-CAE网络,通过无监督学习的方式,有效地提取出了故障样本中的潜在特征,实现了对设备的故障诊断功能;基于迁移学习思想,通过对1D-CAE模型参数进行迁移,进一步地对小样本下的轴承故障进行了跨域诊断;最后,为验证基于1D-DCGAN和1D-CAE的轴承故障诊断方法的效果,采用了美国凯斯西储大学(CWRU)以及西安交通大学(XJTU)轴承数据集进行了实验。实验结果表明:基于1D-DCGAN和1D-CAE的方法明显优于其他对比模型,同种设备的故障识别精度达到了99.21%,不同设备之间的跨域故障识别精度达到了98.87%。研究结果表明:即使在样本数量较少的场景下,基于1D-...  相似文献   

17.
机械传动部件的健康状况影响设备的正常运行,针对齿轮、轴承等传动部件的故障诊断,传统的诊断方法是依靠人工经验提取和选择故障特征,然而,特征选择的优劣直接影响诊断效果。结合深度学习在特征提取和处理高维数据方面的优势,提出一种基于深度卷积变分自编码网络(DCVAEN)的故障诊断方法。该方法利用频谱数据训练深度神经网络,能减少特征提取对人工经验的依赖和信息的损失,在网络中加入了变化的噪声和调整学习率,使得网络隐层提取判别性的故障特征,能满足多故障和变工况的诊断。利用自吸式离心泵数据和西储大学轴承数据进行分析验证,实验结果表明,所提方法能更准确、更稳定地识别传动部件的各种故障,具有较强的泛化能力。  相似文献   

18.
针对传统的计算机磨粒识别方法对相似度高的严重滑动磨粒和疲劳磨粒存在识别过程复杂、识别准确率低等问题,提出利用卷积神经网络(Convolution Neural Network,CNN)自动提取铁谱磨粒图像的特征,再将提取到的特征传入全局平均池化层和新的全连接层进行训练分类的铁谱磨粒智能识别方法。试验显示,基于卷积神经网络模型Inception-v3+1FCL和迁移学习方法可以有效地对严重滑动磨粒和疲劳磨粒进行分类识别,准确率高达89. 35%。  相似文献   

19.
起重机具有诸多类型,不同类型的起重机具有不同的分析或保养方法,因此对起重机类型进行识别意义重大。针对深度卷积神经网络中存在的数据需求量大、训练时间长、计算成本高等问题,提出一种基于迁移学习和微调的起重机类型识别策略。通过搭建不包含分类层的预训练InceptionV3模型并连接自定义的分类层,利用迁移学习和微调技术,训练出适用于起重机类型识别任务的卷积神经网络。实验结果表明,相较于从头搭建并训练深度卷积神经网络,利用迁移学习和微调方法对预训练模型进行训练可得到较高的识别准确率,并且训练速度更快,训练时间显著缩短。验证集和测试集的识别准确率分别为98.24%和97.67%。  相似文献   

20.
针对双转子轴承复杂信号故障特征难提取、工程中某些类型的故障数据缺乏时卷积神经网络(convolution neural network,简称CNN)难训练的问题,提出一种基于改进CNN和Kmeans的双转子轴承半监督故障诊断方法。首先,利用自回归(autoregressive,简称AR)模型对双转子轴承信号去噪,并基于傅里叶变换得到信号频谱作为CNN输入;其次,以Morlet小波基频域函数作为激活函数构建CNN,结合Softmax损失和提出的权重内积最小化损失在少类别训练数据下训练CNN;最后,基于Kmeans聚类算法分析CNN线性输出确定无标签数据伪标签,并结合半监督学习中自训练思想迭代CNN更新伪标签,继而依据伪标签划分双转子轴承正常、已知故障和未知故障状态。利用双转子轴承故障模拟试验台数据进行验证,结果表明,在少类别训练数据下,其诊断效果相较于人工神经网络(artificial neural network,简称ANN)等方法更佳,诊断准确率达到了100%,验证了所提方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号