首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sb2O5 were selected to substitute (Nb0.8Ta0.2)2O5 and the effects of Sb substitution on the dielectric properties of Ag(Nb0.8Ta0.2)O3 ceramics were studied. The perovskite Ag(Nb0.8Ta0.2)1− x Sb x O3 ceramics showed no obvious change with x value being no more than 0.08, and the pseudoperovskite unit cell parameters a = c , b and monoclinic angle β decrease with Sb concentration increasing. The dielectric properties of Ag(Nb0.8Ta0.2)1− x Sb x O3 ceramics were found to be affected greatly by the substitution of Sb for Nb/Ta. The ɛ value of Ag(Nb0.8Ta0.2)1− x Sb x O3 ceramics sintered at their densified temperature increased from 480 to 825 with x from 0 to 0.08, the tan δ value decreased sharply from 0.0065 to 0.0023 (at 1 MHz) with x increasing from 0 to 0.04, and then kept a stable lower tan δ value ∼0.0024 with x to 0.08. The temperature coefficient of capacitance values continuously decreased from a positive value of 1450 ppm/°C for x =0 to a negative value of −38.52 ppm/°C for x =0.08.  相似文献   

2.
Sintering behavior, phase evolution, and microwave dielectric properties of Bi(Sb1− x Ta x )O4 ceramics (0.05≤ x ≤0.60) were studied and their relationships were discussed in detail. Phase studies revealed that a pure monoclinic phase could be formed when x ≤0.20 and a pure orthorhombic phase could be obtained when x ≥0.50. As the x value increased from 0.05 to 0.60, the densified temperature of Bi(Sb1− x Ta x )O4 ceramics decreased from 1050° to about 960°C whereas the density increased from 8.07 to 8.41 g/cm3. The microwave dielectric constant increased from 20.5 to 34 whereas the Q × f value decreased from 60 000 to 29 000 GHz. In the monoclinic phase region, the temperature coefficients of resonant frequency shifted linearly from −58 to −45 ppm/°C as the x value increased from 0.05 to 0.2 and then remained constant at about −12 ppm/°C when x ≥0.40. The Bi(Sb1− x Ta x )O4 ceramics are promising for application of low-temperature cofired ceramics technology.  相似文献   

3.
We report the microwave dielectric properties and the microstructures of Nd(Co1/2Ti1/2)O3 ceramics prepared by the conventional solid-state route. The prepared Nd(Co1/2Ti1/2)O3 exhibits a mixture of Co and Ti showing a 1:1 order in the B site. Lowering the sintering temperature (as low as 1260°C) and promoting the densification of Nd(Co1/2Ti1/2)O3 ceramics could be effectively achieved by adding CuO (up to 0.75 wt%). At 1350°C, Nd(Co1/2Ti1/2)O3 ceramics with 0.5 wt% CuO addition possess a dielectric constant (ɛr) of 27.6, a Q × f value of 165 000 GHz (at 9 GHz), and a temperature coefficient of resonant frequency (τf) of −20 ppm/°C. By comparing with pure Nd(Co1/2Ti1/2)O3 ceramics, incorporating additional CuO helps to render a dielectric material with a higher dielectric constant, a smaller τf value, and a 20% dielectric loss reduction, which makes it a very promising candidate for applications requiring low microwave dielectric loss.  相似文献   

4.
(1− x )(K0.48Na0.52)(Nb0.95Ta0.05)O3– x LiSbO3 [(1− x )KNNT− x LS] lead-free piezoelectric ceramics were prepared by the conventional solid-state sintering method. A morphotropic phase boundary (MPB) between orthorhombic and tetragonal phases was identified in the composition range of 0.03< x <0.05. The ceramics near the MPB exhibit a strong compositional dependence and enhanced electrical properties. The (1− x )KNNT– x LS ( x =0.04) ceramics exhibit good electrical properties ( d 33=250 pC/N, k p=45.1%, k t =46.3%, T c=348°C, T o − t =74°C, P r=25.9 μC/cm2, E c=10.7 kV/cm, ɛr∼1352, tan δ∼3%). These results show that (1− x )KNNT– x LS ceramic is a promising lead-free piezoelectric material.  相似文献   

5.
The effects of substituting Nb5+ with Ta5+ on the microwave dielectric properties of the ZnNb2O6 ceramics were investigated in this study. The forming of Zn(Nb1− x Ta x )2O6 ( x =0–0.09) solid solution was confirmed by the measured lattice parameters and the EDX analysis. By increasing x , not only could the Q × f of the Zn(Nb1− x Ta x )2O6 ( x =0–0.09) solid solution be tremendously boosted from 83 600 GHz at x =0 to a maximum 152 000 GHz at x =0.05, the highest ɛr∼24.6 could also be achieved simultaneously. It was mainly due to the uniform grain morphology and the highest relative density of the specimen. A fine combination of microwave dielectric properties (ɛr∼24.6, Q × f ∼152 000 GHz at 8.83 GHz, τf∼–71.1 ppm/°C) was achieved for Zn(Nb0.95Ta0.05)2O6 solid solution sintered at 1175°C for 2 h.  相似文献   

6.
The effect of the addition of V2O5 on the structure, sintering and dielectric properties of M -phase (Li1+ x − y Nb1− x −3 y Ti x +4 y )O3 ceramics has been investigated. Homogeneous substitution of V5+ for Nb5+ was obtained in LiNb0.6(1− x )V0.6 x Ti0.5O3 for x ≤ 0.02. The addition of V2O5 led to a large reduction in the sintering temperature and samples with x = 0.02 could be fully densified at 900°C. The substitution of vanadia had a relatively minor adverse effect on the microwave dielectric properties of the M -phase system and the x = 0.02 ceramics had [alt epsilon]r= 66, Q × f = 3800 at 5.6 GHz, and τf= 11 ppm/°C. Preliminary investigations suggest that silver metallization does not diffuse into the V2O5-doped M -phase ceramics at 900°C, making these materials potential candidates for low-temperature cofired ceramic (LTCC) applications.  相似文献   

7.
The Sr(B'0.5Ta0.5)O3 ceramics where B'=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Er, and Yb have been prepared by the conventional solid-state ceramic route and their microwave dielectric properties have been investigated. The structure and microstructure of the ceramics have been characterized by X-ray diffraction and scanning electron microscope techniques. The relative permittiviy (ɛr) varies linearly with B'-site ionic radii, except for La, and the temperature coefficient of resonant frequency (τf) varies linearly with the tolerance factor. The Sr(B'0.5Ta0.5)O3 ceramics have ɛr in the range 25.9–32, Q u× f =4500–54 300 GHz, and τf=−79 to −42 ppm/°C. A slight deviation from stoichiometry affects the dielectric properties of these double perovskites. Partial substitution of Ba for Sr could tune the dielectric properties. Addition of rutile (TiO2) lowered the sintering temperature and improved the dielectric properties of Sr(B'0.5Ta0.5)O3 ceramics.  相似文献   

8.
The microwave dielectric properties of CaTi1− x (Al1/2Nb1/2) x O3 solid solutions (0.3 ≤ x ≤ 0.7) have been investigated. The sintered samples had perovskite structures similar to CaTiO3. The substitution of Ti4+ by Al3+/Nb5+ improved the quality factor Q of the sintered specimens. A small addition of Li3NbO4 (about 1 wt%) was found to be very effective for lowering sintering temperature of ceramics from 1450–1500° to 1300°C. The composition with x = 0.5 sintered at 1300°C for 5 h revealed excellent dielectric properties, namely, a dielectric constant (ɛr) of 48, a Q × f value of 32 100 GHz, and a temperature coefficient of the resonant frequency (τf) of −2 ppm/K. Li3NbO4 as a sintering additive had no harmful influence on τf of ceramics.  相似文献   

9.
A narrow region of Zn-vacancy-containing cubic perovskites was formed in the (1− x )Ba3(ZnNb2)O9−( x )Ba3W2O9 system up to 2 mol% substitution ( x =0.02). The introduction of cation vacancies enhanced the stability of the 1:2 B-site ordered form of the structure, Ba(Zn1− x x )1/3(Nb1− x W x )2/3O3, which underwent an order–disorder transition at 1410°C, ∼35° higher than pure Ba(Zn1/3Nb2/3)O3. The Zn vacancies also accelerated the kinetics of the ordering reaction, and samples with x =0.006 comprised large ordered domains with a high lattice distortion ( c/a =1.226) after a 12 h anneal at 1300°C. The tungstate-containing solid solutions can be sintered to a high density at 1390°C, and the resultant ordered ceramics exhibit some of the highest microwave dielectric Q factors ( Q × f =1 18 000 at 8 GHz) reported for a niobate-based perovskite.  相似文献   

10.
Low-loss dielectric ceramics based on Ba(B'1/2Ta1/2)O3 (B'=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Yb, and In) complex perovskites have been prepared by the solid-state ceramic route. The dielectric properties (ɛr, Q u, and τf) of the ceramics have been measured in the frequency range 4–6 GHz by the resonance method. The resonators have a relatively high dielectric constant and high quality factor. Most of the compounds have a low coefficient of temperature variation of the resonant frequencies. The microwave dielectric properties have been improved by the addition of dopants and by solid solution formation. The solid solution Ba[(Y1− x Pr x )1/2Ta1/2]O3 has x =0.15, with ɛr=33.2, Q u× f =51,500 GHz, and τf≈0. The microwave dielectric properties of Ba(B'1/2Ta1/2)O3 ceramics are found to depend on the tolerance factor ( t ), ionic radius, and ionization energy.  相似文献   

11.
Lead-free (Na0.52K0.48− x )(Nb1− x − y Sb y )O3- x LiTaO3 (NKNS–LT) piezoelectric ceramics have been fabricated by ordinary sintering. A special attention was paid to the composition design through which the dielectric and piezoelectric properties of the (Li, Ta, Sb) modified NKN systems were significantly promoted. A property spectrum was generated with a particular discussion on the relationship between the Sb content, the LT content, the polymorphic phase transition, and the electrical properties and their temperature stability. Excellent and tunable electrical properties of d 33=242–400 pC/N, k p=36%–54%,     , and T c=230°–430°C demonstrate a tremendous potential of the compositions studied for device applications.  相似文献   

12.
[(K0.50Na0.50)0.95− x Li0.05Ag x ](Nb0.95Ta0.05)O3 (KNLNANT- x ) lead-free piezoelectric ceramics were prepared by normal sintering. Effects of the Ag content on the microstructure and electrical properties of KNLNANT- x ceramics were systematically investigated. It is found that the ceramics with x =0.03 exhibit relatively good electrical properties along with high Curie temperature: ( d 33∼252 pC/N, T c∼438°C, k p∼45.4%, P r∼30.1 μC/cm2, E c∼13.8 kV/cm, ɛr∼1030, and tan δ∼2.6%). The related mechanism for enhanced electrical properties of the ceramics was also discussed. These results show that KNLNANT-0.03 ceramic is a promising candidate material for high temperature lead-free piezoelectric ceramics.  相似文献   

13.
(Ni1− x Zn x )Nb2O6, 0≤ x ≤1.0, ceramics with >97% density were prepared by a conventional solid-state reaction, followed by sintering at 1200°–1300°C (depending on the value of x ). The XRD patterns of the sintered samples (0≤ x ≤1.0) revealed single-phase formation with a columbite ( Pbcn ) structure. The unit cell volume slightly increased with increasing Zn content ( x ). All the compositions showed high electrical resistivity (ρdc=1.6±0.3 × 1011Ω·cm). The microwave (4–5 GHz) dielectric properties of (Ni1− x Zn x )Nb2O6 ceramics exhibited a significant dependence on the Zn content and to some extent on the morphology of the grains. As x was increased from 0 to 1, the average grain size monotonically increased from 7.6 to 21.2 μm and the microwave dielectric constant (ɛ'r) increased from 23.6 to 26.1, while the quality factors ( Q u× f ) increased from 18 900 to 103 730 GHz and the temperature coefficient of resonant frequency (τf) increased from −62 to −73 ppm/°C. In the present work, we report the highest observed values of Q u× f =103 730 GHz, and ɛ'r=26.1 for the ZnNb2O6-sintered ceramics.  相似文献   

14.
The effects of calcium substitution on the structural and microwave dielectric characteristics of [(Pb1− x Ca x )1/2La1/2](Mg1/2Nb1/2)O3 ceramics (with x = 0.01–0.5) were investigated. All the materials were observed to have an ordered A(B1/2'B1/2")O3-type perovskite structure; however, the space group of the structure changed from Fm 3 m to Pa 3 as the calcium content increased to x = 0.1, and then from Pa 3 to R 3¯ at the x = 0.5 composition. During the structural evolution, the lattice parameter of the perovskite cell decreased linearly, and the dielectric constant ( k ) also decreased, from k = 80 to k = 38. However, the product of the quality factor and the resonant frequency ( Q × f ) increased from 50 000 GHz to 90 000 GHz as the calcium content increased. Also, the temperature coefficient of resonant frequency (τƒ) gradually changed from 120 ppm/°C to −40 ppm/°C as the calcium content increased. At the x = 0.3 composition, a combination of properties— k ∼ 50, Q × f ∼ 86 000 GHz, and τƒ∼ 0 ppm/°C—can be obtained.  相似文献   

15.
Dielectric properties of the system (1 − x)(La1/2Na1/2)TiO3 x Ca(Fe1/2Nb1/2)O3, where 0.4 # x # 0.6, have been investigated at microwave frequencies. The temperature coefficient of resonant frequency (τf), nearly 0 ppm/°C, was realized at x = 0.58. These ceramics had perovskite structure and showed relatively low dielectric losses. A new dielectric material applicable to microwave devices having Q · f of 12000–14000 GHz and a dielectric constant (εr) of 59–60 has been obtained at 1300–1350°C for 5–15 h sintering.  相似文献   

16.
(Li1/2Nd1/2)2+ substitution into the A site and (Mg1/3Ta2/3)4+ substitution into the B site of CaTiO3 ceramic were investigated, respectively. The modified CaTiO3 dielectric ceramics prepared by conventional solid-state method exhibit single perovskite structure and improved dielectric properties. Optimal microwave dielectric properties of ɛr=112.6, Q × f =4480 GHz, τf=8.2 ppm/°C in [Ca0.4(Li1/2Nd1/2)0.6] TiO3 and ɛr=60.2, Q × f =36900 GHz, τf=−10.1 ppm/°C in Ca[Ti0.4(Mg1/3Ta2/3)0.6] O3 are obtained, which indicates their potential for microwave application. The effects of change of crystal structure on dielectric properties are also discussed.  相似文献   

17.
(Ca1+ x Sm1− x )(Al1− x Ti x )O4 (0≤ x ≤0.4) ceramics were synthesized by solid-state reaction method and their microstructures and microwave dielectric properties were investigated. X-ray diffraction analysis and energy-dispersive X-ray analysis indicated that the matrix phase was a solid solution with a composition represented by the chemical formula (Ca1+ x Sm1− x ) (Al1− x Ti x )O4 and minor amount of (Ca,Sm)(Al,Ti)O3 secondary phase was detected. Ca/Ti cosubstitution could significantly improve the microwave dielectric characteristics of CaSmAlO4 ceramics, and the excellent microwave dielectric characteristics were obtained in the modified ceramics as ɛr=19–23, Q × f =49 100–118 700 GHz, and τf=−15–15 ppm/°C.  相似文献   

18.
The dielectric properties at microwave frequencies of Ba(Zn1/3Ta2/3)O3 ceramics prepared by sintering were investigated. These ceramics had lower density but higher loss quality than ceramics hot-pressed at 1400°C. Loss quality was greatly improved by prolonged sintering. The Q of the ceramics measured by the dielectric resonator method was 14 000 at 12 GHz. The ceramics were investigated by X-ray diffraction analysis. It was found that Q improvement corresponds with increased Zn and Ta ordered structures in the ceramics.  相似文献   

19.
The dielectric properties of the Ba (Co1/3 Nb2/3)O3–Ba(Zn1/3Nb2/3)O3 system were determined. Ba (Co1/3 Nb2/3)O3–Ba(Zn1/3Nb2/3)O3 has a complex perovskite structure, a high dielectric constant, a low dielectric loss, and a low temperature coefficient of the resonant frequency. A solid-solution ceramic with 0.7Ba (Co1/3 Nb2/3)O3·0.3 Ba(Zn1/3Nb2/3)O3 has a dielectric constant of K=33.5, Q=11000 at 6.5 GHz, and a temperature coefficient of the resonant frequency of τf=0 ppm/°C. The temperature coefficient of resonant frequency can be varied by changing the composition. The Q values of the ceramics can be increased by annealing in a nitrogen atmosphere. These ceramics can be used for resonant elements and stabilized oscillators.  相似文献   

20.
Dense (1− x )Ca(Mg1/3Ta2/3)O3/ x CaTiO3 ceramics (0.1≤ x ≤0.9) were prepared by a solid-state reaction process. The crystal structures and microstructures were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Single-phase solid solutions were obtained in the entire composition range. Long-range 1:2 ordering of B-site cations and oxygen octahedra tilting lead to the monoclinic symmetry with space group P 21/ c for x =0.1. For x above 0.1, the long-range ordering was destroyed and the crystal structure became the orthorhombic with space group Pbnm . The microwave dielectric properties showed a strong dependence on the composition and microstructure. The dielectric constant and temperature coefficient of resonant frequency increased nonlinearly as the CaTiO3 content increased while the Qf values decreased approximately linearly. Good combination of microwave dielectric properties was obtained at x =0.45, where ɛr=45.1, Qf =34 800 GHz, and τf=17.4 ppm/°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号