首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Under the background of global warming, does the effect of the rising global surface temperature accelerate the hydrological cycle? To address this issue, we use the hydro-climatic data from five sub-basins in Poyang Lake basin in the southeast China over the past 50 years, to investigate the annual and seasonal trends of streamflow and the correlations between streamflow and climatic variables. The Theil–Sen Approach and the non-parametric Mann–Kendall test are applied to identify the trends in the annual and seasonal streamflow, precipitation and evapotranspiration series. It was found that annual and seasonal streamflow of all the stations had increasing trends except Lijiadu station in wet season. Only 37.5% hydro-stations in annual streamflow increased significantly, while most stations increased at 95% significance level in dry season. Trends in annual and seasonal precipitation during the whole period were generally not as significant as those in evapotranspiration. The correlations between streamflow and climate variables (precipitation and evapotranspiration) were detected by the Pearson’s test. The results showed that streamflow in the Poyang Lake basin are more sensitive to changes in precipitation than potential evapotranspiration.  相似文献   

2.
In this study, the calibration and validation period with stable underlying surface conditions was determined by using a statistically significant change point of the annual streamflow in several catchments of the Wei River basin (WRB). The effects of climate changes and human activities on streamflow were estimated by using the sensitivity-based method and the dynamic water balance model, respectively. The contributions of climate effects and human activities effects on streamflow were also investigated. The results showed that almost all the catchments exhibited significant decreasing trend of streamflow in the early 1990s. The streamflow was more sensitive to changes in precipitation than changes in potential evapotranspiration (PET). Effects of climate due to changes in precipitation and PET are weak in Linjiacun, Weijiabao and Xianyang catchments, while it is strong in the catchments controlled by other hydrological stations, accounting for more than 40 % of streamflow reduction. Effects of human activities on streamflow in Linjiacun, Weijiabao, Xianyang and Zhangjiashan catchments accounted for more than 50 % of the streamflow reduction. The study provides scientific foundation to understand the causes of water resources scarcity and useful information for the planning and management of water resources in the ecological fragile arid area.  相似文献   

3.
Under the background of global climate change, hydrological responses to climate change were investigated in Northeastern China. This study analyses the trends of annual and seasonal temperature, precipitation and streamflow series in Nenjiang River Basin. Correlations between streamflow and meteorological variables were investigated, while parametric method and nonparametric tests were applied to determine the trends and correlations. Data collected from a series of monitoring stations showed significant increasing trends of annual and seasonal mean temperature versus time, whereas during the whole period the annual and seasonal precipitation in the basin did not exhibit similar trends although temporal and spatial variations were detected. Affected by the precipitation and temperature changes, significant trends of decreasing annual, spring and autumn streamflow were demonstrated; the decrease concentrating mainly on the mainstream and tributaries of the left bank. Correlation analyses revealed strong relationships between the streamflow and meteorological variables in Nenjiang River Basin, and the impacts of climate change on streamflow were complicated. Results from this study will help water resource managers for decision makings that address the consequences of climate change.  相似文献   

4.
Catchment development has been identified as a potentially major cause of streamflow change in many river basins in India. This research aims to understand changes in the Himayat Sagar catchment (HSC), India, where significant reductions in streamflow have been observed. Rainfall and streamflow trend analysis for 1980–2004 shows a decline in streamflow without significant changes in rainfall. A regression model was used to quantify changes in the rainfall-runoff relationship over the study period. We relate these streamflow trends to anthropogenic changes in land use, groundwater abstraction and watershed development that lead to increased ET (Evapotranspiration) in the catchment. Streamflow has declined at a rate of 3.6 mm/y. Various estimates of changes in evapotranspiration/irrigation water use were made. Well inventories suggested an increase of 7.2 mm/y in groundwater extractions whereas typical irrigation practices suggests applied water increased by 9.0 mm/y, while estimates of evapotranspiration using remote sensing data showed an increasing rate of 4.1 mm/y. Surface water storage capacity of various small watershed development structures increased by 2 mm over 7 years. It is concluded that the dominant hydrological process responsible for streamflow reduction is the increase in evapotranspiration associated with irrigation development, however, most of the anthropogenic changes examined are interrelated and occurred simultaneously, making separating out individual impacts very difficult.  相似文献   

5.
More than 60 catchments from Northern Belgium ranging in size from 16 to 3160 km2 have been studied by means of a physically-based stochastic water balance model. The parameter values derived from calibration of the model were regionally mapped for the study region. Associations between model parameters and basin lithological characteristics were established and tested. The results show that the simple conceptual monthly water balance model with three parameters for actual evapotranspiration, slow and fast runoff is capable either to generate monthly streamflow at ungauged sites or to extend river flow at gauged sites. This allows a fairly accurate estimation of monthly discharges at any location within the region.  相似文献   

6.
The study explores the conjunction of Discrete Wavelet Transform along with trend and shift detection techniques to analyze variability in seasonal temperature, precipitation, and streamflow across the Midwestern United States. The analysis was performed using three dyadic scales that corresponded to periodicities of two, four, and eight years, referred to as D1, D2, and D3, respectively. The study utilized Mann-Kendall test to analyze trends having variations accounting for serial correlation. Pettit’s test was used to detect shift changes in the hydrologic variables. The results of shift changes also were tested for coincidence with El Niño Southern Oscillation (ENSO) in relation to Pacific Decadal Oscillation (PDO). The temperature and precipitation over 106 climate divisions as well as streamflow over 88 stations were evaluated over the period of 1960–2013. Results indicated an increasing temperature trend, with D2 and D3 being the most effective periodic components in detecting trends in winter, spring, and summer; D1 and D3 were most effective in detecting trends in temperature in fall. Likewise, precipitation and streamflow showed dominance of the D3 component in detecting trends. More shifts than trends were detected in all the hydrologic variables indicating abrupt changes in climate in the region. Temporally, shifts were observed from 1975 to 1995, and spatially shift years varied across the Midwest. Most shift changes coincided with PDO and ENSO phases. The results will aid water managers to better prepare for the future emphasizing the need to make planning and operation more flexible to improve the efficiency of water use.  相似文献   

7.
Jingjie Yu  Wenju Cai  Tim Cowan 《国际水》2013,38(3):313-323
The relationship between the interannual changes in streamflow, precipitation and temperature of the Murray–Darling basin is investigated by using a two-parameter climate elasticity of streamflow approach. The non-linear relationship between streamflow and both precipitation and temperature indicates a greater streamflow sensitivity to precipitation than to temperature but a more significant impact of temperature change on streamflow than previously reported. The physical mechanisms producing high streamflow sensitivity to temperature change are not well understood, but may relate to concurrent changes in sub-annual precipitation characteristics such as seasonality, spatial distribution and intensity. Thus these characteristics need to be assessed and accounted for when attempting to project how streamflow, and hence water availability, may change in a future warmer world.  相似文献   

8.
The interactions between precipitation, streamflow and groundwater are very complex. In cold temperate regions characterized by harsh winters, winter streamflow is mainly derived from aquifers that are recharged in the spring, during snowmelt, and in the fall, when evapotranspiration is subdued. Despite this complexity, the modes and trends in the interannual variability of spring (April, May, June and July) streamflow and fall (August, September, October and November) precipitation and streamflow were compared to the modes and trends in the interannual variability of winter (December, January, February and March) streamflow in southern Quebec from 1950 to 2000. Results indicate that the variability modes are identical for all four of these hydro‐climatic variables: two modes (south‐east and east modes) on the south shore of the St. Lawrence River on either side of the 47°N and a single mode (south‐west mode) on the north shore. As for the trend, a significant increase in winter streamflow was observed on the north shore. This increase is comparable to that observed in spring streamflow, which suggests that winter streamflow on the north shore is mainly derived from groundwater recharge during the spring. Moreover, both spring and winter streamflows are positively correlated to the North Atlantic Oscillation climate index. On the south shore, south of the 47°N, a significant decrease was observed in the trend of the interannual variability of winter streamflow, this in spite of a significant increase in fall precipitation and streamflow. An increase in evaporation (decreased infiltration) due to a shift from forest cover to agricultural land cover in this region could account for this. However, fall precipitation and streamflow and winter streamflow are significantly correlated to the Atlantic Multidecadal Oscillation winter index. This correlation is negative with the first two variables but positive with the third. This study suggests that, in southern Quebec, the interannual variability of winter streamflow is mainly affected by spring recharge in non‐agricultural catchments (east and south‐west modes) and by farming in agricultural catchments (south‐east mode). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Impact of Climate Change on Water Resources in the Tarim River Basin   总被引:27,自引:6,他引:21  
Xu  Z. X.  Chen  Y. N.  Li  J. Y. 《Water Resources Management》2004,18(5):439-458
The plausible association between climate change and the variability of water resources in the Tarim River basin, west China is investigated in this study. The long-term trend of the hydrological time series including temperature, precipitation, and streamflow are detected by using both parametric and nonparametric techniques. The possible association between the El Niño/Southern Oscillation (ENSO) and these three kinds of time series are tested. This study enhances the knowledge of the climate change impact on water resources in the Tarim River basin. The conclusion obtained in this investigation shows that the temperature experienced a significant monotonic increase at the 5% level of significance during the past 50 yr, and precipitation also exhibited an upward tendency during the past several decades. A significant jump is also detected for both time series around 1986. This may be resulted from the possible impact of climate change, although the interior climate mechanism needs further investigation. Although precipitation and the streamflow from the headwater of the Tarim River exhibited significant increase, decreasing trend has been detected in the streamflow along the mainstream of the river. It implies that anthropogenic activities instead of the climate change dominated the streamflow cessation and the drying-up of the river. Results also showed that no significant association exists between the ENSO and the temperature, precipitation and streamflow in the study area. This conclusion shows that the water curtailment, river desiccation, and ecosystem deterioration in the Tarim River basin may be mainly resulted from the impact of human activities.  相似文献   

10.
This study was conducted to assess water availability and consumption in the Karkheh River Basin in Iran using secondary data and freely available satellite data. Precipitation was estimated using geo-statistical techniques while a Surface Energy Balance approach was selected for evapotranspiration estimation. The spatial distribution of actual evapotranspiration (ETa) for the Karkheh Basin has been estimated by use of 19 cloud free Moderate Resolution Imaging Spectroradiometer (MODIS) images, which cover a complete cropping year from November 2002 to October 2003. ETa estimates were compared to potential crop evapotranspiration (ETp) estimates for two predominantly irrigated wheat areas in Upper and Lower Karkheh. Differences were found to be 12.5% and 11.7% respectively. Results of the ETa and precipitation estimates reveal that for the study period, the Karkheh Basin received 18,507 × 106m3 as precipitation while ETa is estimated at 16,680 × 106m3. Estimated outflow from the basin for the study period only is 7.8% of the precipitation and indicates that water is a very scarce resource in the Karkheh basin. The basin has been divided in sub-basins to allow for more detailed analysis and results indicate that water balance closure at sub-basin scale ranges from 7.2% to 0.6% of the precipitation. This suggests that the water balance is sufficiently understood for policy and decision making.  相似文献   

11.
In China's national economic growth, an important role is being played by the Songhua River because of the river's abundant resources and natural conditions. Therefore, study of hydrometeorological time series is very important to understand the basin behaviour. This research uses the snow cover data derived from MODIS, streamflow, and meteorological records in the Songhua River Basin to evaluate similarity, complexity, and trends in the snow cover, temperature, precipitation, and streamflow. In this paper, we suggest a new method of ranking the statistics symbolic sequences to examine the degree of similarity (distance measurement) between meteorological stations and compare it with non‐parametric correlation methods and also investigate the deviations in the complexity of a hydrometeorological time series. Information‐based similarity index and multiscale entropy confirm that the hydrometeorological time series of different stations have self‐similarity and abundant complexity. Wavelet entropy is also used to investigate the basin behaviour by taking streamflow records and population. It is found that with the increase in population and urbanization, the complexity values are increased. The results also exhibit that due to increase in urbanization, it affects the hydrological process and nature of environment resulting in complex catchment behaviour. Furthermore, the streamflow trend results displayed significant decline (22.21 m3/s × year?1) in the Songhua River. The results also indicated that the seasonal snow cover trend has no impact on changes of the streamflow. However, the decline of the streamflow may be influenced by the significant human activity upstream of the Songhua River.  相似文献   

12.
Terrestrial hydrological features of the Pearl River basin in South China   总被引:1,自引:0,他引:1  
Jun Niu  Ji Chen   《Journal of Hydro》2010,4(4):279
This paper presents the terrestrial hydrological features of the Pearl River basin in South China by using a macro-scale hydrological model, the Variable Infiltration Capacity (VIC) model, and a routing scheme. Without calibration, the VIC model is used to simulate streamflow, evapotranspiration and soil moisture change at a daily time step for the period 1951–2000. After aggregation of daily output, it is observed that the VIC streamflow simulation is comparable to the observation at a month step. Moreover, from the model simulation, the study reveals that the monthly soil moisture change varies dynamically for maintaining the basin water balance, and both of the streamflow and evapotranspiration are dominant hydrological processes over the basin. With the routing scheme, the hydrological simulation from the VIC model is investigated at a daily step. It is observed that the scheme can improve the simulation of the timings and magnitudes of the daily streamflow peaks significantly, and the temporal scale of the influence of the routing on the streamflow simulation is less than 2–3 weeks in the Pearl River basin.  相似文献   

13.
蒸散发是气候系统能量循环和水分循环的关键要素,探究黄淮海流域实际蒸散发的演变规律及其影响因素对深入理解该区域水循环对气候变化的响应具有重要意义。基于1980—2018年黄淮海流域的GLEAM蒸散发产品数据、气象数据和NDVI数据,采用线性回归法、Mann-Kendall检验及相关性分析等方法,分析了实际蒸散发的时空演变规律及其影响因素。结果表明:GLEAM产品的计算值在黄淮海流域的验证精度较好,流域内多年平均实际蒸散发量为474 mm,呈显著上升趋势。实际蒸散发的空间变化范围是183~708 mm,空间差异显著,呈现从东南向西北方向递减的趋势,季节的空间分布与年际分布特征基本一致。实际蒸散发与NDVI均呈显著正相关关系,与降水和气温以正相关关系为主。黄淮海流域降水变化不明显,气温显著升高,NDVI增加是流域内实际蒸散发量显著上升的主要原因。  相似文献   

14.
人类活动对流域蒸散发的干扰日益显著,然而实测蒸散发数据稀少,且尺度差异与空间异质性等问题限制了大尺度陆面模型与遥感产品在人为蒸散发评估中的适用性与可靠性.本文提出了一种基于多源数据与贝叶斯模型平均的人为蒸散发变异评估框架,并应用于珠江流域.结果表明,通过综合利用地面观测(降水、径流、潜热通量)、社会统计(水资源开发利用...  相似文献   

15.
Northward flowing rivers are the most vulnerable system to a general early warming trend in terms of flood risk. In a changing climate, how well we understand the variability of precipitation and streamflow and the correspondence between them determines the appropriateness and efficiency of river engineering activities, flood control structures, and water resource management policies. Using both time and frequency domain approaches, this study investigated variations and periodicities in precipitation and discharge of two neighboring northward flowing river basins, the Red River of the North (referred to hereafter as the Red River) basin and the Little Missouri River basin in North America. Additionally, this study also characterized whether the most dominant quasiperiodic climate variation El Niño Southern Oscillation (ENSO) affected regional precipitation and streamflow. Results indicated that the southern and central Red River basin experienced significant increases in precipitation and discharge, particularly in cold season, while the Little Missouri River basin had no statistically significant change in precipitation or discharge. The global atmospheric oscillation ENSO had little effects on the regional precipitation and streamflow increases in the Red River basin. Furthermore, strong spectral coherences and prominent annual/semi‐annual periodicities in precipitation and discharge were revealed, confirming how precipitation determines frequency peaks and primary oscillation cycles of discharges in both basins. By removing broad‐scale climatic driver, this study indicated that some local forcing is most likely responsible for the excessive water abundances in the Red River basin, among which agriculture land usages stand out to be the most promising driver.  相似文献   

16.
黄河流域近40年气候变化的时空特征   总被引:7,自引:0,他引:7  
黄河流域是我国主要的气候敏感区之一,气候变化对其生态环境演变与经济社会发展有显著影响。本文利用欧洲中期天气预报中心ERA5再分析资料分析了黄河流域过去40年的温度、降水、水汽通量散度、蒸散和荒漠化风险等的演变特征,结果发现:1979—2019年黄河流域四季均呈现明显增温趋势,其中春季增温最为明显;季节性降水的变化差异显著,春季和夏季降水呈现下降趋势,秋季降水增加;黄河流域空中水汽以辐合为主,过去40年黄河流域上游水汽辐合年际波动最小,中游次之,下游最大;黄河流域蒸散整体呈现减少趋势,其中增加趋势集中在上游地区;黄河流域荒漠化风险整体处于中等风险以上,呈现由南向北加剧的空间分布,1982—2014年黄河流域荒漠化风险呈现下降趋势。本研究厘清了全球气候变化背景下黄河流域蒸散、水汽输送和降水等水循环过程的变化规律,能够为维护黄河流域地区生态安全、防范重大气象灾害风险提供科学依据。  相似文献   

17.
基于标准化降水蒸散指数的长江流域旱涝情势演变   总被引:1,自引:0,他引:1  
基于长江流域133个气象站1970-2012年实测逐月降水量和月平均气温资料,计算不同时间尺度上的标准化降水蒸散指数序列,研究近几十年来长江流域旱涝情势的时空演变特征。结果表明,1970-2012年长江流域整体干旱形势不严重,但是干旱化的趋势比较明显。与长江上游地区相比,长江中下游区域的干旱趋势表现得更加突出,特别是长时间尺度上的干旱趋势非常明显。针对典型极端气象事件分析发现,标准化降水蒸散指数能够反映出不同时间尺度上长江流域发生的旱涝事件,表明该指数对于准确评估长江流域的旱涝程度和分布范围具有很好的指示性意义。  相似文献   

18.
变化环境下的水文循环研究是当今水科学研究的热点之一,研究流域水文过程变化的响应机制,对未来流域水资源规划及管理具有重要的现实意义。以若尔盖流域为研究区域,基于Budyko假设理论,应用敏感性分析方法,对若尔盖流域径流变化进行归因分析,结果表明:若尔盖流域径流对降水、潜在蒸散发和流域特征参数的敏感性系数分别为0.645 1、-0.234 7和-182.205 0,即若尔盖流域降水每增加1mm将导致流域径流增加0.645 1mm,潜在蒸散发每增加1mm将导致流域径流减少0.234 7mm,流域特征参数每增加1将导致流域径流减少182.205 0mm;若尔盖流域逐年径流呈明显的下降趋势,与基准期(1960-1990年)相比,变化期(1991-2011年)径流量减少了56.23mm(20.48%),其主要影响因素为流域下垫面特征的变化,其贡献率可达93.46%,而气候变化的影响仅占5.57%。  相似文献   

19.
Streamflow from the mountains is the main source of water for the lower plain in arid regions. Accurate simulation of streamflow is of great importance to the arid ecosystem. However, many large arid drainage basins in northwestern China have low density of precipitation stations, which makes the streamflow modeling and prediction very difficult. Based on raingauge data and Tropical Rainfall Measuring Mission (TRMM) data combined with raingauge data, different approaches were explored for spatializing precipitation in large area with scarce raingauges. Spatialized precipitation was then input into Soil and Water Assessment Tool (SWAT), a semi-distributed hydrological model, to simulate streamflow. Results from a case study in the Manas river basin showed that simulated hydrographs using both the approaches are able to reproduce the watershed hydrological behavior. Moreover, statistical assessment indicated that hydrological model driven by the spatialized precipitation based on radar combined with raingauge data performed better than that based on gauge data. Radar precipitation estimator can provide a practical data source for hydrological modeling at a basin scale where the raingauge network is sparse.  相似文献   

20.
长江上游气温、降水和干旱的变化趋势研究   总被引:1,自引:0,他引:1  
基于长江上游1962~2012年的85个气象观测站的实测数据,统计分析了该区域气温和降水的变化趋势,并结合SPEI(standardized precipitation evapotranspiration index)指数评价分析了干旱的变化趋势。研究结果表明:长江上游年平均气温呈现上升的趋势,增温率为0.195℃/10a,秋、冬平均气温呈现明显的上升趋势;多年平均气温最高的地区集中在长江上游的南部和东部,西北部最低;多年平均年降水量变化趋势不显著,降水季节性变化差异比较大,春季和冬季的降水量呈现上升的趋势;多年平均年降水主要集中在东部地区,西北部最低。SPEI指数的分析结果显示,长江上游区域干旱状况整体呈现加剧的趋势,干旱次数和干旱程度均加剧,长江上游东部地区干旱趋势最为严重,西北部地区呈现变湿趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号