首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In 2008, around 596 000 t of aluminum dross was generated from secondary aluminum industry in China; however, it was not sufficiently recycled yet. Approximately 95% of the Al dross was land filled without innocent treatment. The purpose of this work is to investigate Al dross recycling by environmentally efficient and friendly methods. Two methods of Al dross recycling which could utilize Al dross efficiently were presented. High-quality aluminum-silicon alloys and brown fused alumina (BFA) were produced successfully by recycling Al dross. Then, life cycle assessment (LCA) was performed to evaluate environmental impact of two methods of Al dross recycling process. The results show that the two methods are reasonable and the average recovery rate of Al dross is up to 98%. As the LCA results indicate, they have some advantages such as less natural resource consumption and pollutant emissions, which efficiently relieves the burden on the environment in electrolytic aluminum and secondary aluminum industry.  相似文献   

2.
铝灰是铝工亚一种重要的副产品,其中的铝含量约占铝生产使用过程中总损失量的1%~12%.回收铝灰中的铝资源能降低成本、保护环境、节约能源和提高资源利用率,有着巨大的经济和社会效益.本文总结了铝灰的来源、分类和组成,综述了铝灰中回收金属铝的回收工艺和利用铝灰合成材料工艺,展望了铝灰回收工艺的发展前景,提出了相关建议.  相似文献   

3.
The recycling of aluminum scrap and dross yields significant economic and energy savings, as well environmental benefits. The recovery of aluminum depends on many factors. The aim of this work is to experimentally investigate aluminum recovery under different conditions. In this study, aluminum dross was processed in a direct-current electric-arc rotary furnace. The presence of crushing refractory bodies during processing was found to increase the degree of aluminum recovery by about ten percent.  相似文献   

4.
This is the history of a modern aluminum dross recycling company, from its beginnings in the last years of the twentieth century to the present day. The vision of the founders was to build a local recycling plant and take full responsibility for sensitive environmental issues by recycling aluminum dross locally rather than shipping it abroad. The paper tells the history of the company from the environmental perspective, and gives an overview of some of the challenges and the decisions that followed from this vision, for instance the selection of technology. The company developed a closed industrial process for the recycling of aluminum dross, and the paper discusses some of their laboratory experiments and industrial trials. An important milestone has now been reached as the process in its present form is recognized by the environmental authorities in the country. Furthermore, it seems realistic that in the near future the final product from this process will be comparable to the product delivered in the processing of salt cake in specialized chemical plants, but at a fraction of the cost.  相似文献   

5.
The main purpose of this work is to analyze lead solder dross, a waste product from manufacturing of printed circuit boards by wave soldering, and to develop an effective and environmentally sound technology for its recycling. A methodology for determination of the content and chemical composition of the metal and oxide phases of the dross is developed. Two methods for recycling of lead solder dross were examined—carbothermal reduction and recycling using boron-containing substances. The influence of various factors on the metal yield was studied and the optimal parameters of the recycling process are defined. The comparison between them under the same parameters-temperature and retention time, showed that recycling of dross with a mixture of borax and boric acid in a 1:2 ratio provides higher metal yield (93%). The recycling of this hazardous waste under developed technology gets glassy slag and solder, which after correction of the chemical composition can be used again for production of PCB.  相似文献   

6.
The plasma dross treatment process is similar in operation and equipment to the conventional RSF process, but its elimination of salt fluxes solves the problem of corrosive gas evolution, and also results in salt-free by-products (NMP), which are recyclable and are a marketable raw material for other industries. Labor and equipment demands are about the same for both processes, but the new process dispenses with the costs of salt purchase and landfilling or recycling of salt cake. The new process is the first industrial application of plasma heating technology in the aluminum industry, and greatly reduces environmental risks, while providing a closed-loop, pollution-and waste-free dross treatment method.  相似文献   

7.
During production of primary and secondary aluminum, various amounts (in some cases up to 200 kg) of aluminum dross, a mixture consisting of molten aluminum metal and different oxide compounds (the nonmetallic phase), are skimmed per tonne of molten metal. To preserve the maximum aluminum content in hot dross for further extraction, it is necessary to cool the dross immediately after skimming. One way to do this is to press the skimmed hot dross in a press. In this process, the skimmed dross is transformed into so-called pressed skulls, with characteristic geometry convenient for storage, transport, or further in-house processing. Because of its high aluminum content—usually between 30% and 70%—pressed skulls represent a valuable source of aluminum and hence are in great demand in the aluminum recycling industry. Because pressed skulls are generally valued on a free-metal recovery basis, which is influenced by the yield of recovery, or in other words, by the quality of the recycling process, it was recognized as important and useful to develop a method of fast and cost-effective nondestructive measurement of the free aluminum content in pressed skulls, independent of the technology of pressed skulls recycling. In the model developed in this work, the aluminum content in pressed skulls was expressed as a function of the pressed skulls density, the density of the nonmetallic phase, and the volume fraction of closed pores. In addition, the model demonstrated that under precisely defined conditions (i.e., skulls from the dross of the same aluminum alloy and skimmed, transported, cooled, and pressed in the same way and under the same processing conditions), when other parameters except the pressed skulls density remain constant, the aluminum content in pressed skulls can be expressed as a linear function of the pressed skulls density. Following the theoretical considerations presented in this work, a practical industrial methodology was developed for nondestructive prediction of the amount of free aluminum in pressed skulls w Al, based on nondestructive measurement of the density ρ of the pressed skulls. The pressed skulls density is measured by a fully automatic gas displacement pyknometer with a working volume large enough to enable the insertion of the whole pressed skull sample. An additional integral part of this methodology is the set of experimentally determined linear graphs w Al-ρ, plotted in advance for all classes of pressed skulls existing in the plant, from the experimentally collected data on pressed skulls density and aluminum recovery by melting. After selecting the proper graph w Al-ρ, which is usually performed on an aluminum alloy basis, the pyknometric measured density of the pressed skulls can be routinely related to the aluminum content sought, within a relative error of ±5%.  相似文献   

8.
A process based on the use of a plasma system for recovering aluminum from dross, beverage cans, and aluminum scrap has been developed. The plasma process is clean, and there is no need for the addition of any compound, such as salt. In principle, a higher recovery rate of aluminum is attainable, since no oxidation of the aluminum occurs during the process. An economic analysis shows that the operating costs for the plasma system are at least 23% cheaper than for the traditional process using air/gas or ail/oil burners; the plasma process also does not generate either of the common residues produced by the burners. The maintenance costs of the plasma process are also lower than that of the traditional process. Overall, the plasma system is cheaper, cleaner, and easier than the oil/gas burner technology when recovering aluminum from dross, beverage cans, and scrap.  相似文献   

9.
The dominating Zn recycling process is the so-called Waelz process. Waelz oxide (WOX), containing 55–65% Zn in oxidic form, is mainly derived from electric arc furnace dust produced during recycling of galvanized steel. After its wash treatment to separate off chlorides, WOX is used as feedstock along with ZnS concentrates for the electrolytic production of high-grade zinc. Novel and environmentally cleaner routes for the purification of WOX and the production of Zn are investigated using concentrated solar energy as the source of high-temperature process heat. The solar-driven clinkering of WOX and its carbothermal reduction were experimentally demonstrated using a 10 kWth packed-bed solar reactor. Solar clinkering at above 1265°C reduced the amount of impurities below 0.1 wt.%. Solar carbothermal reduction using biocharcoal as reducing agent in the 1170–1320°C range yielded 90 wt.% Zn.  相似文献   

10.
To identify the environmental fate and exposures with respect to selenium compounds in aluminum processing, total particulates and selenium concentrations at three U.S. aluminum facilities were assessed in October 2002. Site A was a reduction facility that utilized manganese alloys containing selenium, Site B was a rolling mill facility that used manganese alloys free of selenium, and Site C was a recycling facility that received aluminum dross and scrap from both Site A and Site B. Total selenium concentrations in process materials and waste materials were measured. Simultaneously, furnace stack emissions and occupational airborne exposures were monitored at each of the three facilities. Results indicated that the major environmental management issues were selenium particulates in the stack emissions from Site A and baghouse dusts classified as hazardous due to selenium from the rotary furnaces at Site C. For more information, contact K. Hagelstein, TIMES Limited, 1604 Leopard Street, Sheridan, WY 82801; (307) 674-4844; fax (307) 674-4843; e-mail aircaredoc@aol.com.  相似文献   

11.
The four strategic directions (referring to the entire life cycle of aluminum) are as follows: production, primary use, recycling, and reuse. Thus, in this work, the following are analyzed and optimized: reducing greenhouse gas emissions from aluminum production, increasing energy efficiency in aluminum production, maximizing used-product collection, recycling, and reusing. According to the energetic balance at the gaseous environment level, the conductive transfer model is also analyzed through the finished elements method. Several principles of modeling and optimization are presented and analyzed: the principle of analogy, the principle of concepts, and the principle of hierarchization. Based on these principles, an original diagram model is designed together with the corresponding logic diagram. This article also presents and analyzes the main benefits of aluminum recycling and reuse. Recycling and reuse of aluminum have the main advantage that it requires only about 5% of energy consumed to produce it from bauxite. The aluminum recycling and production process causes the emission of pollutants such as dioxides and furans, hydrogen chloride, and particulate matter. To control these emissions, aluminum recyclers are required to comply with the National Emission Standards for Hazardous Air Pollutants for Secondary Aluminum Production. The results of technological, economic, and ecological optimization of aluminum recycling are based on the criteria function’s evaluation in the modeling system.  相似文献   

12.
With the global warming of concern, the secondary aluminum stream is becoming an even more important component of aluminum production and is attractive because of its economic and environmental benefits. In this work, recycling of automotive aluminum is reviewed to highlight environmental benefits of aluminum recycling, use of aluminum alloys in automotive applications, automotive recycling process, and new technologies in aluminum scrap process. Literature survey shows that newly developed techniques such as laser induced breakdown spectroscopy (LIBS) and solid state recycling provide promising alternatives in aluminum scrap process. Compared with conventional remelting and subsequent refinement, solid state recycling utilizing compression and extrusion at room or moderate temperature can result in significant energy savings and higher metal yield.  相似文献   

13.
铝灰处理工艺研究   总被引:1,自引:0,他引:1  
铝熔炼过程中产生的铝灰含铝量大约在45%-50%,有很高的利用价值。通过实验证明了通过铝灰热处理、球磨、中频炉熔炼等工艺,可回收铝灰中大部分金属铝,并将低含铝量的铝灰做成电解铝用阳极钢爪保护环,使铝灰循环利用,充分开发了铝灰的价值,减少了铝灰对环境的污染,并收到了较好的经济效益。  相似文献   

14.
通过对铝灰渣水解反应过程中组分及其含量变化的研究,提出铝灰渣中AlN含量的修正公式;根据AlN含量和悬浊液pH值的测定,考察时间、温度、转速等水解参数对AlN水解速率的影响并对其进行多元非线性回归分析。结果表明:升高温度能降低铝灰渣中AlN含量并降低悬浊液pH值;延长时间可有效促进AlN的水解,同时在2h内悬浊液pH值迅速提升至高位;转速对AlN水解速率和悬浊液pH值无明显影响。总体而言,AlN含量比悬浊液pH值更能客观表征铝灰渣中AlN水解速率。对水解参数及修正后铝灰渣中AlN含量进行多元非线性回归分析并二次简化,发现理论值与实验值相对误差≤±8.65%。  相似文献   

15.
Aluminum dross tailings, an industrial waste from the Egyptian Aluminum Company (Egyptalum), was used to produce two types of alums: aluminum sulfate alum (Al2(SO4)3·12H2O) and ammonium aluminum alum {(NH4)2SO4AL2 (SO4)3·24H2O}. This was carried out in two processes. The first involves leaching the impurities using diluted H2SO4 with different solid/liquid ratios at different temperatures to dissolve the impurities present in the starting material in the form of aluminum sulfates. The second process is the extraction of aluminum (as aluminum sulfate) from the purified aluminum dross tailings thus produced. This was carried out in an autoclave. The effects of temperature, time of reaction, and acid concentration on pressure leaching and extraction processes were studied in order to specify the optimum conditions to be applied in the bench scale production as well as the kinetics of leaching process.  相似文献   

16.
The aluminum production chain from bauxite to primary aluminum includes refining using the Bayer process, and smelting through electrolysis. This production chain produces two main solid residues, red mud at the refinery and spent pot lining at the smelter. The use of these residues as raw material for other industrial processes can save large amounts of energy, reduce the overall environmental impact, and even improve the emissions of other processes. This paper shows the results of ten years of co-processing of spent pot lining in the cement industry in Brazil and the efforts to develop technologies to reduce the reactivity and use the red mud as raw material for several different processes. This approach, although engineering intensive, can reduce C02 emissions and save huge amounts of wasted energy in transport and processing when compared with dedicated recycling or neutralizing processes.  相似文献   

17.
The two most widely industrialized techniques for aluminum refining are the three-layer electrolytic refining process and the segregation process. The three-layer process uses molten salt electrolysis to produce aluminum of greater than 99.99% purity. The segregation process produces aluminum of 99.98–99.99% purity. Although aluminum refined by the segregation process has a somewhat lower purity than that produced by the other methods, the segregation process has become increasing common since it consumes less energy. Ultrahigh-purity aluminum (99.9999%), which has uranium and thorium impurities reduced to less than 1 ppb, can also be produced.  相似文献   

18.
Among the various steps of aluminium production from liquid metal, a lot of scrap is generated due to machining operations. Therefore, recycling of aluminium scrap is an interesting subject because of the broad applications of this metal and low efficiency of processes used to recycle metal scrap. In this paper, the recyclability of aluminium alloy AA 336 turnings with different cold compacting pressures and a protective salt flux (NaCl–KCl–KF) has been experimentally studied. Various categories of compacted samples were melted at 750 °C in molten aluminium alloy AA 336 and also in the protective salt flux to recover aluminium alloy. In order to understand the amount of recycling of different samples, weight loss measurement was applied. From recyclability stand point it is shown that using protective salt flux is the best route, from the point of view of recyclability. Mechanical properties and chemical analysis of samples were approximately the same as the primary material produced by conventional casting process.  相似文献   

19.
In this article, the results of an investigation of granular and compact aluminum drosses are reported. The bulk density of granular drosses was determined according to DIN 52110-B, while DIN 52102-RE-VA was applied to compact drosses. The salt contents of the drosses were measured by applying the leaching test DIN 38414-S4; the metal contents by the salt-melting process were measured on a laboratory scale. In addition to the density data, the particle-size analysis, the distribution of elements in the different fractions, composition, metal content of recovered alloys, and gas evolution were compiled in a dross identity card characterizing each dross and simplifying the preanalysis for recovery.  相似文献   

20.
Anode pre-heating was proposed as an alternative for recycling waste heat from smelting operations, which currently consume substantially more energy than the theoretical minimum required. Aside from direct electricity savings, anode pre-heating can provide extra metal production and reduce carbon dioxide emissions. Public data on energy and aluminum production is analyzed to examine the value of these three potential components and define a research development path. It is concluded that indirect process gains show the most potential value with economies on the order of 3 TWh per year in electricity, an avoidance of about 1.8 million metric tons of CO2 emissions, and an increase in production capacity of about 200,000 metric tons of aluminum per year without any expansion of installed capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号