首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用来自于废旧轮胎的两种再生钢纤维制备含粗骨料的超高性能混凝土,并测定其抗压强度、劈裂抗拉强度、断裂能和静弹性模量等力学性能,空白组及普通钢纤维增韧超高性能混凝土作对比性能试验。结果显示,未附着橡胶颗粒的再生钢纤维使超高性能混凝土的抗压强度略微下降,降低幅度为3.91%,其余各类型钢纤维均有利于提高超高性能混凝土的力学性能;而附着橡胶颗粒的再生钢纤维显著提高了超高性能混凝土的断裂能,约为普通钢纤维增韧超高性能混凝土的4倍。此外,再生钢纤维对超高性能混凝土的劈裂抗拉强度和静弹性模量的提高效果均优于普通钢纤维。再生钢纤维,尤其是附着橡胶颗粒的再生钢纤维,可以作为一种增韧材料替代普通钢纤维应用到超高性能混凝土工程结构中。   相似文献   

2.
Very few studies on recycled aggregate concretes (RC) have been extended to the use of recycled ceramic and mixed aggregates in relation with high strength concretes. In the main they concentrate only on the analysis of the physical and mechanical properties. This study deals with the investigation of the influence that different percentages (up to 30% substitution for natural aggregates) of high porous ceramic and mixed recycled aggregates have over the plastic, autogenous and drying shrinkage of the concretes. The physical and mechanical properties as well as the chloride resistance were also determine in order to assess the viability of the use of ceramic and mixed recycled aggregates in high strength concretes. The results revealed that the employment of highly porous recycled aggregates reduced the plastic and autogenous shrinkage values of the concrete with respect to those obtained by conventional concrete (CC). Although the total drying shrinkage of the recycled concrete proved to be 25% higher than that of the CC concrete, the CC concrete had in fact a higher shrinkage value than that of the RC from 7 to 150 days of drying. It can be concluded that the RC concrete produced employing up to 30% of fine ceramic aggregates (FCA, with 12% of absorption capacity) achieved the lowest shrinkage values and higher mechanical and chloride ion resistance. In addition, the concrete produced with low percentage (10–15%) of recycled mixed aggregates also had similar properties to conventional concrete.  相似文献   

3.
钢纤维橡胶再生混凝土的抗冻性试验   总被引:1,自引:0,他引:1       下载免费PDF全文
为使废弃混凝土和再生橡胶在北方地区混凝土工程中得以应用,采用正交试验法研究再生粗骨料掺量、再生粗骨料强化方式、钢纤维掺量与橡胶掺量对钢纤维橡胶再生混凝土(C45)立方体抗压强度和抗冻性的影响规律。利用扫描电镜和螺旋CT扫描技术研究了钢纤维橡胶再生混凝土的宏观和细观结构及其对抗冻性能的影响机理。结果表明:橡胶颗粒掺量是影响再生混凝土含气量、抗压强度和相对动弹模量的重要因素,再生粗骨料掺量是影响相对动弹模量和强度损失率的次要因素,钢纤维掺量对混凝土抗压强度增强作用较小,粗骨料强化方式对混凝土性能影响不大;橡胶颗粒与砂浆界面的裂缝宽度在5~55μm之间,二者之间的相容性较差;当橡胶颗粒掺量(与砂的体积比)大于20%后,随橡胶颗粒掺量增大,混凝土内部孔洞数目增多,钢纤维橡胶再生混凝土抗压强度降低、抗冻性减弱。  相似文献   

4.
In this research work, High Performance Concrete (HPC) was produced employing 30% of fly ash and 70% of Portland cement as binder materials. Three types of coarse recycled concrete aggregates (RCA) sourced from medium to high strength concretes were employed as 100% replacement of natural aggregates for recycled aggregate concrete (RAC) production. The specimens of four types of concretes (natural aggregate concrete (NAC) and three RACs) were subjected to initial steam curing besides the conventional curing process. The use of high quality RCA (>100 MPa) in HPC produced RAC with similar or improved pore structures, compressive and splitting tensile strengths, and modulus of elasticity to those of NAC. It was determined that the mechanical and physical behaviour of HPC decreased with the reduction of RCA quality. Nonetheless steam-cured RACs had greater reductions of porosity up to 90 days than NAC, which led to lower capillary pore volume.  相似文献   

5.
This study evaluates the possibility of measuring the damage of the recycled concrete. In this way, two conventional concretes with a w/c ratio of 0.55 and 0.65 were designed. Based on them, six recycled concretes with different percentages of replacement of natural coarse aggregates with recycled coarse aggregate (20, 50 and 100%) were obtained. To take into account the high absorption capacity of the recycled aggregates, before using them they were pre-wetted for 10 min. The results concluded that scalar damage mechanics (based on the variations of the elastic modulus) and volumetric strains curves can be use to quantify the damage of the recycled concrete. The results from both approaches indicated that the damage to concrete depended on the percentage of replacement, increasing with higher replacement percentages. Additionally, values of the damage, that are quantified using the critical stress and according to the scalar damage mechanics, are given.  相似文献   

6.
7.
The recycling of construction and demolition (C&;D) waste as a source of aggregates for the production of new concrete has attracted increasing interests from the construction industry. While the environmental benefits of using recycled aggregates are well accepted, some unsolved problems prevent this type of material from wide application in structural concrete. One of the major problems with the use of recycled aggregates in structural concrete is their high water absorption capacity which leads to difficulties in controlling the properties of fresh concrete and consequently influences the strength and durability of hardened concrete. This paper presents an experimental study on the properties of fresh concrete prepared with recycled aggregates. Concrete mixes with a target compressive strength of 35 MPa are prepared with the use of recycled aggregates at the levels from 0 to 100% of the total coarse aggregate. The influence of recycled aggregate on the slump and bleeding are investigated. The effect of delaying the starting time of bleeding tests and the effect of using fly ash on the bleeding of concrete are explored.  相似文献   

8.
为研究不同因素、不同水平对再生混凝土力学性能的作用。该文通过正交试验研究钢纤维掺量、再生粗骨料掺量和粉煤灰掺量对再生混凝土力学性能(抗压强度、劈裂抗拉强度和抗折强度)的影响,确定各因素对再生混凝土力学性能的影响程度,并加以量化表征,并提出多因素共同作用下再生混凝土力学性能的多元非线性回归模型且进行验证。在此基础上,该文进一步研究再生混凝土的抗冻性。结果表明:再生混凝土的力学性能随钢纤维掺量的增加而提高;随粉煤灰掺量增加而降低;再生粗骨料掺量对再生混凝土的力学性能影响较小。钢纤维的掺入可提高再生粗骨料的掺量。再生混凝土力学性能的实测值与通过建立的回归模型得到的计算值的最大误差在6.5%以内。此外,钢纤维的掺入和减少再生粗骨料的掺量均可以提高再生混凝土的抗冻性。  相似文献   

9.
In this paper the bond behavior of recycled aggregate concrete was characterized by replacing different percentages of natural coarse aggregate with recycled coarse aggregate (20, 50 and 100 %). The results made it possible to establish the differences between the conventional concrete bond strength and the recycled concrete bond strength depending on the replacement percentage. It was thus found that bond stress decreases with the increase of the percentage of recycled coarse aggregate used. In order to define the influence of recycled aggregate content on bond behavior, normalized bond strength was calculated taking into account the reduced compressive strength of the recycled concretes. Finally, using the experimental results, a modified expression for maximum bond stress (bond strength) prediction was developed, taking into account replacement percentage and compressive strength. The obtained results show that the equation proposed provides an experimental value to theoretical prediction ratio similar to that of conventional concrete.  相似文献   

10.
A mixture of calcium carbide residue and fly ash (CRFA) is an innovative new binder for concrete instead of using ordinary Portland cement (OPC). Therefore, this study aims at investigating the bond interaction between common steel reinforcing bars and the aforementioned concrete. To this end, both CRFA and OPC concretes using crushed limestone and recycled concrete aggregate (RCA) as a coarse aggregate were prepared to investigate the bond strength of smooth and deformed bars by pull-out tests. The bond stress−slip relationships were also identified to determine the effects of CRFA binder and RCA on the bond strength behavior. The results indicate that the values the of bond-slip behavior and bond strengths of steel bar in CRFA concretes are similar to those embedded in OPC concrete. Moreover, the bond strength was significantly affected by RCA and the types of steel bar. Although the concretes had the same compressive strengths, the deformed bar embedded in CRFA concrete with RCA had a lower bond strength than the one with crushed limestone. However, the reduction in bond strength of the CRFA concrete with RCA was still less than that of OPC concrete with RCA. For the CRFA concretes, the bond strengths of the deformed bars were approximately 1.7–3.6 times higher than that of smooth bars.  相似文献   

11.
The use of recycled aggregate from construction and demolition waste (CDW) as replacement of fine and coarse natural aggregate has increased in recent years in order to reduce the high consumption of natural resources by the civil construction sector. In this work, an experimental investigation was carried out to investigate the influence of steel fiber reinforcement on the stress–strain behavior of concrete made with CDW aggregates. In addition, the flexural strength and splitting tensile strength of the mixtures were also determined. Natural coarse and fine aggregates were replaced by recycled coarse aggregate (RCA) and recycled fine aggregate (RFA) at two levels, 0% and 25%, by volume. Hooked end steel fibers with 35 mm of length and aspect ratio of 65 were used as reinforcement in a volume fraction of 0.75%. The research results show that the addition of steel fiber and recycled aggregate increased the mechanical strength and modified the fracture process relative to that of the reference concrete. The stress–strain behavior of recycled aggregate concrete was affected by the recycled aggregate and presented a more brittle behavior than the reference one. With the addition of steel fiber the toughness, measured by the slope of the descending branch of the stress–strain curve, of the recycled concretes was increased and their behavior under compression becomes similar to that of the fiber-reinforced natural aggregate concrete.  相似文献   

12.
The increasing amount of waste concrete makes desirable collection of high quality of recycled aggregate from waste concrete to be reused for construction. This research used high grade recycled coarse aggregate (RCA) created using pulsed power technology to make concrete specimens. Concrete created from natural aggregate was also prepared to compare the properties of concrete made using pulsed power recycled aggregate. Established acoustic emission (AE) parameter analyses which are AE hit, relationship between RA value and average frequency, and b-value of AE amplitude distribution were applied to analyze the concrete fracture behavior. In addition, AE Weibull analysis was also proposed to evaluate the reliability of the concrete. A set of AE measurement testing was applied to the concrete specimens during compression loading. At the age of 28 days, compressive strength reaches 35.4 MPa and Young’s modulus is 23.6 GPa. The results indicate that the fracture process and reliability of concrete made using pulsed power RCA is similar to that of natural coarse aggregate concrete suggesting that both concrete have equivalent characteristic under compression. Furthermore, the good agreement results shared by AE Weibull analysis with those of other analyses suggesting this method can also be employed as one parameter to determine the condition of concrete.  相似文献   

13.
Many environmental problems caused by the large volumes of construction and demolition waste (C&DW), the lack of adequate deposition sites and the shortage of natural resources have led to the use of C&DW as replacement of natural aggregates in the production of new concrete. As in the case of natural aggregates, when recycled aggregates are used to manufacture structural concrete, the assessment of their physical, mechanical and durable characteristics is a key issue. The different physical and mechanical properties of the recycled coarse aggregate (RCA) are evaluated. RCA was obtained by crushing conventional concretes with different strength levels (different w/c ratios) containing four different types of natural coarse aggregates (three crushed stones and a siliceous gravel), which differ in shape, composition and surface texture. There is a significant influence of the natural coarse aggregate (NCA) on the properties of RCA, which in many cases is greater than that of the w/c ratio of the source concrete.  相似文献   

14.
Waste from construction and demolition accumulates in large quantities in the modern world. Recycled coarse aggregates derived from this waste can replace virgin aggregates used in the production of new concretes but the studies on the effect of using the fine fraction of this waste on the properties of new concrete have not yet led to clear conclusions. The present study evaluated the properties of recycled fine aggregates derived from two recycling plants using two different waste treatment procedures, as well as their effects on the properties of fresh and hardened mortars prepared using these aggregates at two water-to-cement ratios and three replacement ratios. It was found that the recycled aggregates were more porous than the natural aggregates and may have contained some organic matter. Setting times were longer when recycled aggregates replaced natural aggregates and strength and durability were reduced as well. Partial replacement of the fine aggregate is possible if an appropriate compensation of the water to cement ratio is applied.  相似文献   

15.
The increase in drying shrinkage and decrease in tensile properties of concrete proportioned with recycled concrete aggregate (RCA) can result in a high risk of cracking under restrained conditions. However, the reduction of the modulus of elasticity of such concrete, can lead to greater stress relaxation and reduction in cracking potential. An experimental program was undertaken to evaluate the effect of using RCA at high substitution rates of 50 and 100% (by vol.) on the cracking potential under restrained conditions. Four different types of coarse RCA, two binder types, and water-to-cementitious materials ratio (w/cm) of 0.37 and 0.40 were considered in the study. Mechanical properties, drying shrinkage, and cracking potential using the ring test were investigated. Test results indicated no cracking up to 35 days in the case of the reference mixture and the concrete prepared with 50% RCA replacement. The 28-day stress rate of such mixtures were limited to 0.12 MPa/day. Depending on the RCA type, the incorporation of 100% coarse RCA in a binary system made with 0.40 w/cm increased the 35-day cracking potential to up to 74%, with values of stress rate ranging from 0.25 to 0.34 MPa/day. The mixtures proportioned with 100% RCA developed tensile creep coefficient of 0.34–0.78 at the time of cracking compared to 0.34–0.36 for the reference concrete at the same age. However, greater elastic concrete strain and lower tensile strength resulted in reduced time to cracking at 100% RCA replacement, which was 9.0–11.0 days.  相似文献   

16.
The main aim of this work was to determine creep and shrinkage variations experienced in recycled concrete, made by replacing the main fraction of the natural aggregate with a recycled aggregate coming from waste concrete and comparing it to a control concrete. It was possible to state that the evolution of deformation by shrinkage and creep was similar to a conventional concrete, although the results after a period of 180 days showed the influence of the substitution percentage in the recycled aggregates present in the mixture. In the case when 100% coarse natural aggregate was replaced by recycled aggregate there was an increase in the deformations by creep of 51% and by shrinkage of 70% as compared to those experienced by the control concrete. The substitution percentages of coarse natural aggregate by coarse recycled aggregate were 20, 50 and 100%. Fine natural aggregate was used in all cases and the amount of cement and water–cement ratio remained constant in the mixture.  相似文献   

17.
The results of thirty pullout tests carried out on 8 and 10 mm diameter deformed steel bars concentrically embedded in recycled aggregate concrete designed using equivalent mix proportions with coarse recycled concrete aggregate (RCA) replacement percentages of 0, 25, 50, 75 and 100 % are reported towards investigation of bond behaviour of RCA concrete. Bond strengths of the natural aggregate concrete and the RCA concrete was found to be comparable, particularly for the 10 mm rebars, and the RCA replacement percentage had an insignificant effect on peak bond stress values. However, for both the bar sizes, when the measured bond strengths were normalized with the respective compressive strengths, then the normalized bond strengths so obtained across all the RCA replacement percentages were higher for the RCA concrete compared to the natural coarse aggregate concrete. Further, higher normalized bond strength values were obtained for the 8 mm rebars compared to the 10 mm bars. An empirical bond stress versus slip relationship between RCA concrete and deformed steel bars has been proposed on the basis of regression analysis of the experimental data and it is conservatively suggested that anchorage lengths of 8 and 10 mm diameter deformed bars in RCA concrete may be taken the same as in natural aggregate concrete.  相似文献   

18.
The sanitary ceramics industry inevitably generates wastes, irrespective of the improvements introduced in manufacturing processes. The present study investigated the reuse of these wastes as recycled coarse aggregate in partial substitution (15%, 20% and 25%) of natural coarse aggregates in the manufacture of structural concretes. The results demonstrate that recycled, eco-efficient concretes present superior mechanical behaviour compared to conventional concrete and it was moreover appreciated that the recycled ceramic aggregate does not interfere in a negative way during the hydration process. It was also observed that the microstructure in the interfacial transition zone (ITZ) between recycled ceramic aggregate and paste was more compact than in the case of natural aggregate and paste.  相似文献   

19.
陈宇良  姜锐  陈宗平  张绍松 《工程力学》2023,35(3):88-97, 128
为研究钢纤维再生混凝土在复合受剪状态下的力学性能,以取代率、法向应力和钢纤维掺量为变化参数,设计了102个标准立方体试件进行复合受剪试验。观察了钢纤维再生混凝土在直剪、压剪作用下的破坏形态,获取了其在直剪、压剪作用下的全过程剪切应力-位移曲线,深入分析了取代率、法向应力和钢纤维掺量对钢纤维再生混凝土剪切强度、峰值位移的影响规律。结果表明:随着法向应力的增大,剪切强度逐渐增大;随着取代率的增加,掺量为0%的钢纤维再生混凝土剪切强度随之减小,掺量为1%的钢纤维再生混凝土剪切强度先增大后减小;与掺量为0%的钢纤维再生混凝土相比,掺量为1%的钢纤维再生混凝土平均剪切强度提高了10.77%;提出了剪切强度公式,所得计算值与试验值吻合良好。  相似文献   

20.
Recycling of waste concrete is one of the sustainable solutions for the growing waste disposal crisis and depletion of natural aggregate sources. As a result, recycled concrete aggregate (RCA) is produced, and so far it has mostly been used in low-value applications such as for the pavement base. But, from the standpoint of promoting resource and energy savings and environmental preservation, it is essential to study whether a concrete made of recycled aggregates—recycled aggregate concrete (RAC) can be effectively used as a structural material. The experimental research presented in this paper is performed in order to investigate the flexural behavior of RAC beams when compared to the behavior of natural aggregate concrete (NAC) beams under short-term loading and consequently the possibility of using RAC in structural concrete elements. Three different percentages of coarse RCA in total mass of coarse aggregate in concrete mixtures (0 %—NAC, 50 %—RAC50, and 100 %—RAC100), and three different reinforcement ratios (0.28, 1.46, and 2.54 %) were the governing parameters in this investigation. Full-scale tests were performed on nine simply supported beams until the failure load had been reached. Comparison of load-deflection behavior, crack patterns, service deflections, failure modes and ultimate flexural capacity of NAC and RAC beams was made based on our own and other researchers’ test results. The results of conducted analysis showed that the flexural behavior of RAC beams is satisfactory comparing to the behavior of NAC beams, for both the service and ultimate loading. It is concluded that, within the limits of this research, the use of RAC in reinforced concrete beams is technically feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号