共查询到19条相似文献,搜索用时 0 毫秒
1.
Donna Page Marjan Jahanshahi 《IEEE transactions on neural systems and rehabilitation engineering》2007,15(2):198-206
Problems with shifting attentional set and concurrent performance of tasks are key cognitive deficits in Parkinson's disease (PD). Our aim was to examine the effects of deep brain stimulation of the subthalamic nucleus on tests of set shifting and dual task performance in patients with PD. Twelve patients with PD were assessed on tests of set shifting and on dual task performance with subthalamic nucleus (STN) stimulation switched on and off in a counterbalanced order. All patients obtained a clinical benefit from deep brain stimulation (DBS) of the STN. STN stimulation significantly improved set shifting. The effect of DBS on dual task performance was not significant. Change in measures of set shifting was significantly associated with the change in the motor symptoms of PD with DBS. The improved set shifting with DBS of the STN in PD supports the critical role of the striato-frontal circuits in this cognitive function. 相似文献
2.
A real-time functional electrical stimulation (FES) state controller was designed that utilized sensory nerve cuff signals from the cat forelimb to control the timing of stimulation of the Palmaris Longus (PalL) muscle during walking on the treadmill. Sensory nerve signals from the median and superficial radial nerves provided accurate, reliable feedback related to foot contact and lift-off which, when analyzed with single threshold Schmitt triggers, produced valuable state information about the step cycle. The study involved three experiments: prediction of the timing of muscle activity in an open-loop configuration with no stimulation, prediction of the timing of muscle activity in a closed-loop configuration that included stimulation of the muscle over natural PaIL electromyogram (EMG), and temporary paralysis of selected forelimb muscles coupled with the use of the state controller to stimulate the PalL in order to return partial support function to the anesthetized limb. The FES state controller was tested in a variety of walking conditions, including different treadmill speeds and slopes. The results obtained in these experiments demonstrate that nerve cuff signals can provide a useful source of feedback to FES systems for control of limb function. 相似文献
3.
Modulation effects of epidural spinal cord stimulation on muscle activities during walking. 总被引:2,自引:0,他引:2
He Huang Jiping He Richard Herman Michael R Carhart 《IEEE transactions on neural systems and rehabilitation engineering》2006,14(1):14-23
Epidural spinal cord stimulation (ESCS) combined with partial weight bearing therapy (PWBT) has been reported to facilitate recovery of functional walking for individuals after chronic incomplete spinal cord injury (ISCI). Muscle activities were analyzed in this report to examine the modulation effect of ESCS on muscle recruitment during gait training. Two ISCI individuals participated in the study and both are classified as ASIA C with low motor scores in the lower limbs. Stimulating electrodes were placed at the epidural space over T10-L2 spinal segments, along the midline in participant 1 (S1), and off-midline in participant 2 (S2). Surface electromyograms (EMGs) from leg muscles under both ESCS ON and OFF conditions recorded during treadmill gait were analyzed in time-frequency domains. ESCS application produced acute modulations in muscle activities in both participants, but the observed pattern, magnitude, and spectral content of the EMGs differed. In S1, ESCS induced a significant shift in the temporal pattern of muscle activity toward normal comparing with that when ESCS was OFF, though without eliciting noticeable change in frequency distribution between ESCS ON and OFF conditions. When ESCS was applied in S2, a modulation of EMG magnitude was observed and, consequently, improved joint kinematics during walking. In this case, a stimulation entrainment appeared in time-frequency analysis. The results suggest that ESCS activates neural structures in the dorsal aspect of the spinal cord and facilitates gait-related muscle recruitment. The exact effects of ESCS depend on the electrode placement and possibly injury history and residual functions, but in general ESCS produces a positive effect on improved walking speed, endurance, and reduced sense of effort in both ISCI subjects. 相似文献
4.
Effect of joint angle on EMG variables in leg and thigh muscles 总被引:4,自引:0,他引:4
Farina D. Merletti R. Nazzaro M. Caruso I. 《IEEE engineering in medicine and biology magazine》2001,20(6):62-71
It is the purpose of this article (a) to show the influence of electrode location on EMG amplitude and spectral variables for simulated and real signals for different muscles of the thigh and leg, (b) to investigate the relative movement of the muscle under the recording electrodes when the joint angle changes for the set of muscles most frequently investigated in gait analysis, and (c) to illustrate how different electrode locations may lead to different interpretations of the muscle activity investigated with amplitude and spectral analysis of the surface EMG signal. The study has been carried out on the following muscles of the leg and thigh: rectus femoris, vastus lateralis, vastus medialis, biceps femoris, semitendinosus, tibialis anterior, gastrocnemius lateralis, and gastrocnemius medialis 相似文献
5.
A major issue associated with functional electrical stimulation (FES) of a paralyzed limb is the decay with time of the muscle force as a result of fatigue. A possible means to reduce fatigue during FES is by using interrupted stimulation, in which fatigue and recovery occur in sequence. In this study, we present a model which enables us to evaluate the temporal force generation capacity within the electrically activated muscle during first stimulation fatigue, i.e., when the muscle is activated from unfatigued initial conditions, and during postrest stimulation, i.e., after different given rest durations. The force history of the muscle is determined by the activation as derived from actually measured electromyogram (EMG) data, and by the metabolic fatigue function expressing the temporal changes of muscle metabolites, from existing data acquired by in vivo 31P MR spectroscopy in terms of the inorganic phosphorus variables, Pi or H2PO4-, and by the intracellular pH. The model was solved for supra-maximal stimulation in isometric contractions separated by rest periods, and compared to experimentally obtained measurements. EMG data were fundamental for prediction of the ascending force during its posttetanic response. On the other hand, prediction of the decaying phase of the force was possible only by means of the metabolite-based fatigue function. The prediction capability of the model was assessed by means of the error between predicted and measured force profiles. The predicted force obtained from the model in first stimulation fatigue fits well with the experimental one. In postrest stimulation fatigue, the different metabolites provided different prediction capabilities of the force, depending on the duration of the rest period. Following rest duration of 1 min, Pi provided the best prediction of force; H2PO4- extended the prediction capacity of the model to up to 6 min and pH provided a reliable prediction for rest durations longer than 12 min. The results presented shed light on the roles of EMG and of metabolites in prediction of the force history of a paralyzed muscle under conditions where fatigue and recovery occur in sequence. 相似文献
6.
Effects of STN DBS on rigidity in Parkinson's disease. 总被引:1,自引:0,他引:1
Mark B Shapiro David E Vaillancourt Molly M Sturman Leo Verhagen Metman Roy A E Bakay Daniel M Corcos 《IEEE transactions on neural systems and rehabilitation engineering》2007,15(2):173-181
We quantified the effects of deep brain stimulation (DBS) of the subthalamic nucleus (STN) and medication on Parkinsonian rigidity using an objective measure of work about the elbow joint during a complete cycle of imposed 1-Hz sinusoidal oscillations. Resting and activated rigidity were analyzed in four experimental conditions: 1) off treatment; 2) on DBS; 3) on medication; and 4) on DBS plus medication. Rigidity at the elbow joint was also assessed using the Unified Parkinson's Disease Rating Scale (UPDRS). We tested ten patients who received STN DBS and ten age-matched neurologically healthy control subjects. The activated rigidity condition increased work in both Parkinson's disease (PD) patients and control subjects. In PD patients, STN DBS reduced both resting and activated rigidity as indicated by work and the UPDRS rigidity score. This is the first demonstration that STN stimulation reduces rigidity using an objective measure such as work. In contrast, the presurgery dose of antiparkinsonian medication did not significantly improve the UPDRS rigidity score and reduced work only in the activated rigidity condition. Our results suggest that STN DBS may be more effective in alleviating rigidity in the upper limb of PD patients than medications administered at presurgery dosage level. 相似文献
7.
8.
Mandrile F. Farina D. Pozzo M. Merletti R. 《IEEE transactions on neural systems and rehabilitation engineering》2003,11(4):407-415
The purpose of this study was to investigate the amplitude properties of the artifact generated on the recorded surface electromyography (EMG) signals during transcutaneous electrical muscle stimulation. The factors which were investigated are the shape of the stimulation waveform, the distance of the stimulating electrode from the recording system, the interelectrode distance of the detection system, the spatial filter used for signal detection, and the stimulation current amplitude. Surface EMG signals were recorded during electrical stimulation of the biceps brachii motor point with a linear adhesive array of eight electrodes. Electrical stimulation was applied with seven stimulation waveforms (mono- and biphasic triangular, sinusoidal, and rectangular), generated by a specifically designed neuromuscular stimulator with hybrid output stage. The stimulation peak current was linearly increased from 0 mA to the maximum tolerated by the subject. The detection systems investigated were single and double differential with interelectrode distances multiple of 5 mm. Two trials for each contraction were performed on three different days. The average rectified artifact values (both absolute and normalized with respect to the corresponding M-wave values) were computed to investigate the artifact amplitude properties. Results indicated that, while the artifact average rectified value, normalized with respect to the M-wave amplitude, depended on the distance of the detecting electrodes from the stimulation point, it did not depend on the stimulation waveform, on the current intensity, on the interelectrode distance, and on the spatial filter. It was concluded that, using hybrid stimulation techniques, the selection of particular stimulation waveforms, interelectrode distances, or spatial filters has a minor effect on the reduction of the artifact when recording M-waves. 相似文献
9.
Othmar Schuhfried Christian Kollmann Tatjana Paternostro-Sluga 《IEEE transactions on neural systems and rehabilitation engineering》2005,13(1):105-109
Central nervous system disorders affect the anatomy and physiology of the lower motoneuron. This fact has an impact on the stimulation parameters, especially on the duration of the stimulating impulses, for functional electrical stimulation in chronic hemiparetic patients. The aim of this study was thus to test the excitability and to determine chronaxie values and strength-duration curves of weak wrist and finger extensor muscles and spastic finger and wrist flexor muscles in the hemiparetic arm. Twelve patients with chronic hemiplegia (>6 months after the onset of the cerebral lesion) participated in the study. A constant current stimulator was used. As to chronaxie values no significant differences were found between the extensor muscles (mean+/-SD: 0.44+/-0.16 ms) and flexor muscles (mean+/-SD: 0.36+/-0.22 ms). A moderate variability was seen for both extensor muscles (0.2-0.8 ms) and flexor muscles (0.1-0.9 ms). These values are well within the normal range determined for innervated muscles. All strength-duration curves were completely normal for each muscle. We conclude that in chronic hemiparetic muscles, impulses of the same duration can be used as in muscles of healthy subjects. 相似文献
10.
The effects of long-term FES-assisted walking on intrinsic and reflex dynamic stiffness in spastic spinal-cord-injured subjects 总被引:1,自引:0,他引:1
Mirbagheri M.M. Ladouceur M. Barbeau H. Kearney R.E. 《IEEE transactions on neural systems and rehabilitation engineering》2002,10(4):280-289
The effects of long-term functional electrical stimulation (FES)-assisted walking on ankle dynamic stiffness were examined in spinal cord-injured (SCI) subjects with incomplete motor function loss. A parallel-cascade system identification method was used to identify intrinsic and reflex contributions to dynamic ankle stiffness at different ankle positions while subjects remained relaxed. Intrinsic stiffness dynamics were well modeled by a linear second-order model relating intrinsic torque to joint position. Reflex stiffness dynamics were accurately described by a linear third-order model relating halfwave rectified velocity to reflex torque. We examined four SCI subjects before and after long-term FES-assisted walking (>16 mo). Another SCI subject, who used FES for only five months was examined 12 mo latter to serve as a non-FES, SCI control. Reflex stiffness decreased in FES subjects by an average of 53% following FES-assisted walking, intrinsic stiffness also dropped by 45%. In contrast, both reflex and intrinsic stiffness increased in the non-FES, SCI control. These findings suggest that FES-assisted walking may have therapeutic effects, helping to reduce abnormal joint stiffness. 相似文献
11.
Influence of different stimulation frequencies on power output and fatigue during FES-cycling in recently injured SCI people 总被引:2,自引:0,他引:2
Eser P.C. Donaldson Nde.N. Knecht H. Stussi E. 《IEEE transactions on neural systems and rehabilitation engineering》2003,11(3):236-240
This study investigated whether power output during 30 min sessions of functional electrical stimulation (FES)-cycling can be increased by using stimulation frequencies higher than 30 Hz. The stimulation frequencies of FES-cycling training sessions of 19 recently injured para- and tetraplegics were randomly set at 30, 50, or 60 Hz and power output (PO) was measured continually. The mean PO of the 30 min, the PO of the last minute of each session, and the minimum PO were significantly greater at 60 and 50 Hz than at 30 Hz (ANOVA without cross-product). A 19% and 25% higher mean PO was reached at 50 and 60 Hz, respectively, compared to 30 Hz. The PO of the last minute of each session was almost always higher than the mean PO of the whole session and also higher at higher frequencies, which indicates that no muscle fatigue could be detected in 30 min FES-cycling at any of the tested frequencies. 相似文献
12.
针对宁夏发电集团中宁运行公司#1汽轮发电机运行中存在的氢气纯度和氢气湿度不合格、发电机内进油的原因及危害进行了分析。并提出了防范措施。 相似文献
13.
14.
Results from visualization of boiling process and experimental study of critical heat fluxes on microstructured surfaces are presented. The studied surfaces were obtained using the deforming cutting method and have different design shapes and sizes. Mechanisms of heat transfer enhancement are substantiated. A factor of 4.1 higher value of critical heat flux is obtained. 相似文献
15.
16.
Machann J Etzel M Thamer C Haring HU Claussen CD Fritsche A Schick F 《Magma (New York, N.Y.)》2011,24(1):29-33
Object
Intramyocellular lipids (IMCL) were shown to be metabolically highly active. In order to get insight into short-term regulation of IMCL and to reveal related problems with standardization in metabolic studies using the common signal ratio IMCL/Cr3, relative concentration changes from morning to evening in the same day were examined under four different nutritional and exercise conditions. 相似文献17.
18.
Inadmissible operational flaws occurring in the critical zones of heat-transfer and mechanical equipment are commonly revealed in all nuclear power plant units both in Russia and abroad. The number of such flaws will only grow in the future because the majority of nuclear power plants have been in operation for a time that is either close to or even exceeds the assigned service life. In this connection, establishing cause-and-effect relations with regard to accelerated incipience and growth of flaws, working out compensating measures aimed at reducing operational damageability, and setting up monitoring of equipment integrity degradation of during operation are becoming the matters of utmost importance. There is a need to introduce new approaches to comprehensive diagnostics of the technical state of important nuclear power plant equipment, including continuous monitoring of its operational damageability and the extent of its loading in the most critical zones. Starting from 2011, such a monitoring system has successfully been used for the Novovoronezh NPP Unit 5 in the zone of weld joint no. 111-1 of steam generator no. 4. Based on the results from operation of this system in 2011–2013, unsteady thermally induced force effects (periodic thermal shocks and temperature abnormalities) were reveled, which had not been considered in the design, and which have an essential influence on the operational loading of this part. Based on an analysis of cause-and-effect relations pertinent to temperature abnormalities connected with technological operations, a set of measures aimed at reducing the thermally induced force loads exerted on pipeline sections was developed, which includes corrections to the process regulations for safe operation and to the operating manuals (involving changes in the algorithms for manipulating with the stop and control valves in the steam generator blowdown system). 相似文献
19.
A power transformer is expected to operate up to 40 years. With current cost-benefit calculations, the user is forced to perform maintenance that will bring a further extension of transformer life. The maintenance can only be based on on-site and off-site monitoring with extended analytical and electrical tests, which can define the service condition of the transformer and predict its further life expectancy. The life of a transformer is mainly dependent on the life of its solid insulation, and the life-limit is determined by the thermal degradation of the winding paper. The Kraft paper decreases in tensile strength with the progress of aging and, at some point, can no longer withstand the short circuit stresses. The monitoring of the complex permittivity of transformer oils, as a function of frequency and temperature, may provide information concerning the state of the insulation. In this article, we show the influence of air and oil type on the aging of pressboard under the influence of a considerable amount of moisture. The rate of the degree of polymerization, the development of furanic compounds, as well as the gas-in-oil analysis in comparison with the aging of the pure oil under the same conditions have been investigated. 相似文献