首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 197 毫秒
1.
Glia-activating factor (GAF) is a novel heparin-binding growth factor purified from the culture supernatant of a human glioma cell line. It shows a spectrum of activity slightly different from those of other known growth factors. We have isolated the cDNA which encodes human GAF. A homology search revealed that GAF would be the ninth member of the FGF family, and we therefore call it FGF-9. The human FGF-9 cDNA cloned by using oligonucleotide probes encoded a polypeptide consisting of 208 amino acids. Sequence similarity to other members of the FGF family was estimated to be around 30%. Two cysteine residues and other consensus sequences in family members were also well conserved in the FGF-9 sequence. FGF-9 was found to have no typical signal sequence in its N terminus like those in acidic FGF and basic FGF. Acidic FGF and basic FGF are known not to be secreted from cells in a conventional manner. However, FGF-9 was found to be secreted from cells after synthesis despite its lack of a typical signal sequence. It could be detected exclusively in the culture medium of cDNA-transfected COS cells. The amino acid sequence of proteins purified from culture supernatant of the CHO cell line, which was cDNA transfected and selected as a high producer of FGF-9, showed that no peptides were cleaved from the N terminus except the initiation methionine. The rat FGF-9 cDNA was also cloned, and the structural analysis indicated that the PGF-9 gene is highly conserved. Expression of the FGF-9 gene could be detected in the brain and kidney of the adult rat. Restricted gene expression in organs and the unique secretion nature of the protein suggest that FGF-9 plays a physiological role which differs from those of well-characterized acidic FGF and basic FGF.  相似文献   

2.
Basic fibroblast growth factor (FGF-2) is not only a potent mitogen for various cells but also a multifunctional factor with angiogenic and chemotactic activity, and the capacity to induce the synthesis of various proteinases and to modulate endocrine function. To clarify the role played by FGF-2 in the progression of pituitary tumor, we fused rat FGF-2 cDNA to the promoter SR alpha, consisting of the early promoter of SV40 and HTLV(I)-LTR, and we cotransfected GH3 cells with pSV2-neo by an electroporation method. After selection by G418, we obtained 7 neomycin-resistant clones. Southern blot analysis of genomic DNA revealed the presence of transfected rat FGF-2 cDNA in 4 of the 7 clones. To measure FGF-2 molecules, we established a new immuno-fluorometric assay system, using 3 monoclonal antibodies against different portions of human FGF-2. This assay had a minimum sensitivity of 10 pg/ml and cross-reacted neither with acidic fibroblast growth factor (FGF-1) nor insulin-like growth factor 1 (IGF-1), even at a concentration of 100 ng/ml. Although FGF-2 was undetectable in the culture medium of any of the clones, the cell homogenate contained a significant amount of FGF-2 (7.2 ng/mg protein) in 1 of the 4 FGF-2-transfected clones (GH3FGF(+)), whereas FGF-2 was not detected (< 5.2 pg/mg protein) in the cell homogenates of either the parent GH3 cells or the control cells transfected with pSV2-neo alone (GH3FGF(-)), GH3FGF(+) grew as adherent cells and formed epithelial sheets with a growth rate similar to that of control cells. The amount of prolactin(PRL) released by TRH was greater in GH3FGF(+) than that in GH3 or GH3FGF(-). On the other hand, the sensitivity to SRIF was increased in GH3FGF(+) compared with that in other clones. The findings of these in vitro studies indicate that FGF-2, if it is expressed in pituitary tumor cells, plays little if any role in cell growth but may modulate certain cell functions such as responsiveness to hormones.  相似文献   

3.
To determine the extent to which autocrine effects of acidic fibroblast growth factor (FGF)-1 overexpression contribute to an increased malignant phenotype, FGF-1-transfected MCF-7 cells were retransfected with a FGF receptor (FGFR1) vector encoding a truncated dominant-negative receptor to inhibit autocrine FGF signal transduction. This transfection eliminated FGF signaling within the breast cancer cells without interfering with their ability to produce FGF-1, thereby allowing possible paracrine effects to still be observed in vivo. Truncated FGFR1 overexpression inhibited the acquired ability of FGF-1-overexpressing cells to form colonies in soft agar in estrogen-depleted or antiestrogen-containing medium. However, soft agar colony formation was still stimulated by estrogen treatment in cells expressing up to 6 x 10(5) truncated FGFR1 sites per cell. In vivo, truncated receptor expression severely inhibited the ability of the FGF-1-overexpressing cells to form tumors without estrogen in ovariectomized mice, indicating that the mitogenic effect of FGF-1 on the breast tumor cells was important in the estrogen-independent in vivo growth of these transfectants. However, rapid formation of large tumors was still observed in estrogen-supplemented mice injected with the truncated FGFR1-expressing cells, suggesting that the paracrine effects of FGF production could act in synergy with mitogenic effects mediated by estrogen. Truncated FGFR1-overexpressing cells also continued to form tumors in tamoxifen-treated mice, raising the possibility that the paracrine effects of FGF-1 expression may allow the partial agonist properties of this antiestrogen to be more readily observed. We conclude that autocrine effects of FGF-1 increase the ability of MCF-7 breast cancer cells to grow in vitro and in vivo under estrogen-depleted conditions but that paracrine effects of FGF-1 are also involved in the enhancement of tumor growth in estrogen-supplemented or tamoxifen-treated animals.  相似文献   

4.
Fibroblast growth factor 7 (FGF-7) or keratinocyte growth factor (KGF), is a potent and specific mitogen for epithelial cells. We have recently identified a novel human FGF-7 homologue, named FGF-10. To study the expression of this new FGF family member and its regulation in wound repair, we cloned the mouse FGF-10 (mFGF-10) cDNA. The encoded protein is 92% identical to human FGF-10 and 91% identical to rat FGF-10. When expressed in mammalian 293 cells, the mFGF-10 protein was glycosylated but remained cell- or extracellular matrix-associated. Upon addition of heparin, mFGF-10 protein was released into the media. mRNA encoding mFGF-10 was relatively abundant in lung, skin, brain and heart. In the skin, both FGF-7 and mFGF-10 were expressed in the dermal, but not the epidermal compartment. In contrast to FGF-7, mFGF-10 expression was not induced during cutaneous wound repair. In cultured fibroblasts, expression of mFGF-10 was strongly repressed by transforming growth factor beta and tumor necrosis factor alpha, whereas epidermal growth factor and interleukin-1beta had no effect. These results demonstrate a differential regulation of mFGF-10 and FGF-7 expression in vitro and during the wound healing process.  相似文献   

5.
6.
Brain invasion prevents complete surgical extirpation of malignant gliomas; however, invasive cells from distant, histologically normal brain previously have not been isolated, cultured, and characterized. To evaluate invasive human malignant glioma cells, the authors established cultures from gross tumor and histologically normal brain. Three men and one woman, with a mean age of 67 years, underwent two frontal and two temporal lobectomies for tumors, which yielded specimens of both gross tumor and histologically normal brain. Each specimen was acquired a minimum of 4 cm from the gross tumor. The specimens were split: a portion was sent for neuropathological evaluation (three glioblastomas multiforme and one oligodendroglioma) and a portion was used to establish cell lines. Morphologically, the specimens of gross tumor and histologically normal brain were identical in three of the four cell culture pairs. Histochemical staining characteristics were consistent both within each pair and when compared with the specimens sent for neuropathological evaluation. Cultures demonstrated anchorage-independent growth in soft agarose and neoplastic karyotypes. Growth rates in culture were greater for histologically normal brain than for gross tumor in three of the four culture pairs. Although the observed increases in growth rates of histologically normal brain cultures do not correlate with in vivo behavior, these findings corroborate the previously reported stem cell potential of invasive glioma cells. Using the radial dish assay, no significant differences in motility between cultures of gross tumor and histologically normal brain were found. In summary, tumor cells were cultured from histologically normal brain acquired from a distance greater than 4 cm from the gross tumor, indicating the relative insensitivity of standard histopathological identification of invasive glioma cells (and hence the inadequacy of frozen-section evaluation of resection margins). Cell lines derived from gross tumor and histologically normal brain were usually histologically identical and demonstrated equivalent motility, but had different growth rates.  相似文献   

7.
The growth and metastatic spread of cancer is directly related to tumor angiogenesis, and the driving factors need to be understood to exploit this process therapeutically. However, tumor cells and their normal stroma express a multitude of candidate angiogenic factors, and very few specific inhibitors have been generated to assess which of these gene products are only innocent bystanders and which contribute significantly to tumor angiogenesis and metastasis. Here we investigated whether the expression in tumors of a secreted fibroblast growth factor (FGF)-binding protein (FGF-BP) that mobilizes and activates locally stored FGFs (ref. 11) can serve as an angiogenic switch molecule. Developmental expression of the retinoid-regulated FGF-BP gene is prominent in the skin and intestine during the perinatal phase and is down-modulated in the adult. The gene is, however, upregulated in carcinogen-induced skin tumors, in squamous cell carcinoma (SCC) and in some colon cancer cell lines and tumor samples. To assess the significance of FGF-BP expression in tumors, we depleted human SCC (ME-180) and colon carcinoma (LS174T) cell lines of their endogenous FGF-BP by targeting with specific ribozymes. We found that the reduction of FGF-BP reduced the release of biologically active basic FGF (bFGF) from cells in culture. Furthermore, the growth and angiogenesis of xenograft tumors in mice was decreased in parallel with the reduction of FGF-BP. This suggests that human tumors can utilize FGF-BP as an angiogenic switch molecule.  相似文献   

8.
Gliomas are characterized by their extensive invasion into the brain parenchyma. Recently it has been shown that normal brain cells can produce laminin, fibronectin and collagen type IV when confronted by invading glioma cells. Laminin stimulates cell migration of several human glioma cell lines in vitro. This migration can be inhibited by adding blocking monoclonal antibodies (MAbs) against the most expressed integrin subunits, alpha3 and beta1. Previous studies have shown that glioma cell migration, invasion and growth are stimulated by epidermal growth factor (EGF). However, MAb directed against the EGF receptor (EGFR) did only partly inhibit the invasive process in vitro. Since laminin has regional peptide homology with EGF (EGF-like repeats), the present work was aimed at studying how two human glioma cell lines exposed to antibodies to the EGFR, reacted to laminin stimulated migration. Furthermore, we wanted to study which role the EGFR and the laminin receptor integrin subunits alpha3 and beta1 play during glioma cell invasion. EGFR expression of two glioma cell lines, AN1/lacZ and U-251/lacZ was studied by flow cytometry and immunofluorescence microscopy. A cell migration assay was used to study effects of MAbs against EGFR on migration from laminin-stimulated tumor spheroids. Tumor cell invasion was evaluated by using an in vitro co-culture model, where normal fetal brain cell aggregates were confronted with multicellular tumor spheroids. The results show that both cell lines expressed EGFR, AN1/lacZ 4-fold more than U-251/lacZ. MAb against EGFR inhibited the laminin-stimulated migration only from AN1/lacZ spheroids. MAbs against alpha3 and beta1 integrin subunits inhibited glioma cell invasion in vitro. The present work indicates possible connections between laminin-stimulated cell migration and the EGFR expression on glioma cells. These elements contribute to the characteristic features of glioma cells and may be an important part of the complex relationships between growth factors, integrins and extracellular matrix during glioma cell invasion.  相似文献   

9.
Fibroblast growth factor (FGF)-10 is a novel member of the FGF family. Although FGF-10 mRNA was preferentially expressed in the lung, the mRNA was also expressed, although at low levels, in the brain. We examined the localization of FGF-10 mRNA along with FGF-7 mRNA in the rat brain by in situ hybridization. FGF-10 mRNA showed spatially restricted expression in some regions of the brain, including the hippocampus, thalamus, midbrain and brainstem, although FGF-7 mRNA was not expressed in any of the brain regions examined. FGF-10 mRNA was strongly expressed in several restricted nuclei, especially in motor nuclei, including the oculomotor nucleus, dorsal motor nucleus of vagus, motor trigeminal nucleus, facial nucleus and hypoglossal nucleus. This localization pattern was distinct from those of aFGF, bFGF FGF-5 and FGF-9 mRNAs reported previously. The cellular localization of FGF-10 mRNA showed that the mRNA in the brain was preferentially expressed in neurons but not in glial cells. The present findings indicate that FGF-10, an additional member of the FGF family expressed in the brain, has a distinct role in the brain.  相似文献   

10.
Schwannoma-derived growth factor (SDGF) is a member of the epidermal growth factor (EGF) family, having mitogenic activity on rat astrocytes, fibroblasts and Schwann cells. The SDGF gene is significantly expressed in the newborn rat lung and in the adult rat sciatic nerve. However, except for one rat schwannoma cell line, from which SDGF and its cDNA were isolated, nothing is known about SDGF expression in established tumor cell lines. We examined the expression level of the SDGF gene in a variety of rat tumor cell lines by Northern blotting and found that it was increased in 11 of 25 established lines. The most abundant SDGF mRNA, which was about 50-fold higher than in the newborn rat lung, was expressed in rat liver adenoma dRLa74 cells. In rat glioma cell lines, such as C6, 9L and T9, and in the rat hepatoma dRLh84 and H411E cells, the SDGF expression level was about 10-fold higher than in the newborn rat lung. In 8 of 13 cell lines expressing SDGF mRNA, the EGF receptor (EGFR) gene, the product of which is regarded as a functional receptor of SDGF, was co-expressed. In addition, transfected gene-dependent anti-sense SDGF RNA expression under the control of the human metallothionein promoter significantly suppressed the in vitro growth as well as in vivo tumorigenicity of 9L glioma cells. Our results suggest that SDGF acts as an autocrine growth factor in the development and growth of rat tumors such as gliomas.  相似文献   

11.
A new member of the fibroblast growth factor (FGF) family, FGF-13, has been molecularly cloned as a result of high throughput sequencing of a human ovarian cancer cell library. The open reading frame of the novel human gene (1419 bp) encodes for a protein of 216 a.a. with a molecular weight of 22 kDa. The FGF-13 sequence contains an amino-terminal hydrophobic region of 23 a.a. characteristic of a signal secretion sequence. FGF-13 is most homologous, 70% similarity at the amino acid level, to FGF-8. Northern hybridization analysis demonstrated prominent expression of FGF-13 in human foetal and adult brain, particularly in the cerebellum and cortex. In proliferation studies with BaF3 cells, FGF-13 preferentially activates cell clones expressing either FGF receptor variant, 3-IIIc or 4. The signal transduction pathways of FGF-13 and FGF-2 were compared in rat hippocampal astrocytes. The two FGFs induce an equivalent level of tyrosine phosphorylation of mitogen-activated protein kinase (MAPK) and c-raf activation. However, FGF-13 is more effective than FGF-2 in inducing the phosphorylation of phospholipase C-gamma (PLC-gamma). Treatment of neuronal cultures from rat embryonic cortex with FGF-13 increases the number of glutamic acid decarboxylase immunopositive neurons, the level of high-affinity gamma-aminobutyric acid (GABA) uptake, and choline acetyltransferase enzyme activity. The GABAergic neuronal response to FGF-13 treatment is rapid with a significant increase occurring within 72 h. We have identified a novel member of the FGF family that is expressed in the central nervous system (CNS) and increases the number as well as the level of phenotypic differentiation of cortical neurons in vitro.  相似文献   

12.
BACKGROUND: Recombinant human basic fibroblast growth factor (rHu-bFGF) is known to stimulate proliferation in some tumor cells and to modulate tumor vascularization. PURPOSE: The purpose of this study was to examine the possible role of this agent in the development of tumors. The study was designed to determine the effects of modulating bFGF activity in vivo in tumor models from cell lines with different responses to bFGF and with different content and receptor levels of bFGF. METHODS: Two tumor cell lines (human DLD-2 colon carcinoma and rat C6 glioma) were characterized for bFGF content and bFGF receptor levels by Western blot analysis in cultured cells and by studies of [125I]rHu-bFGF binding to sections from xenografts grown in nude mice. Tumor cell proliferation was monitored after treatment with rHu-bFGF or the DG2 or DE6 IgG monoclonal antibody to rHu-bFGF in culture and in vivo. RESULTS: C6 cells exhibited 7800 high-affinity receptors for rHu-bFGF per cell (dissociation constant [Kd] = 46 pM), while DLD-2 cells lacked high-affinity receptors. rHu-bFGF stimulated [3H]thymidine uptake by C6 cells, but the addition of DG2 IgG prevented this stimulation; rHu-bFGF had no effect on [3H]thymidine incorporation by DLD-2 cells. C6 cells had higher levels of immunoreactive bFGF than did DLD-2 cells. The xenografts from both cell lines exhibited high-affinity [125I]rHu-bFGF binding that was concentrated on vascular-like structures. rHu-bFGF at a dosage of 0.25 mg/kg given intraperitoneally daily for 18 days caused a twofold increase in DLD-2 tumor weight but had little effect on the growth of C6 xenografts. In contrast, daily intravenous injections of DG2 IgG given to mice had no effect on DLD-2 tumor growth but reduced growth of C6 tumors by approximately 30%--a statistically significant difference. CONCLUSIONS: The addition of exogenous rHu-bFGF or of a neutralizing antibody resulted in significant alterations in tumor growth in vivo, which were specific for tumor type and bFGF characteristics. While some of these effects may be mediated by the bFGF-responsive endothelial cells of the tumor vasculature (DLD-2 colon carcinoma), others may result from inhibition of bFGF-dependent tumor cell proliferation (C6 glioma). IMPLICATIONS: Studies that measure tumor blood flow are necessary to confirm that these effects are mediated by changes in tumor vasculature.  相似文献   

13.
Basic fibroblast growth factor (FGF-2; bFGF) is a major mitogen for connective tissue cells, and participates in the healing process. It has already been reported that FGF-2 could be applicable to enhance periodontal regeneration. In the present study, we examined FGF receptor (FGFR) expression on human periodontal ligament (PDL) cells. The binding of [125I]-labeled FGF-2 to human PDL cells was studied by radioreceptor assay. The binding of [125I]-FGF-2 to PDL cells reached a plateau after 2.5 h incubation at 4 degrees C and was inhibited by the addition of unlabeled FGF-2 and acidic FGF (FGF-1; aFGF), but not insulin-like growth factor-I, platelet-derived growth factor and transforming growth factor-beta 1. Scatchard analysis revealed the presence of approximately 1.0 x 10(5) FGF-2 binding sites per cell with an apparent Kd of 1.2 x 10(-10) M. Interestingly, the binding of [125I]-FGF-2 on PDL cells reached its maximum at d 6 of the culture and then gradually decreased. Scatchard analysis also demonstrated that the number of FGFRs on a PDL cell was altered during the course of the culture, while the affinity between FGF-2 and its receptor was not. The responsiveness of PDL cells to FGF-2, which was monitored by the inhibitory effect on alkaline phosphatase activity, was reduced in proportion to the decrease in the number of FGFRs on the PDL cells. The present study suggests that PDL cells alter the responsiveness to FGF-2 during the course of the culture by changing the density of its receptor, and that the density of FGFR expression might be a marker of the cytodifferentiation of PDL cells into mineralized tissue forming cells.  相似文献   

14.
The murine brain fatty acid binding protein (B-FABP) is encoded by a developmentally regulated gene that is expressed in radial glial cells and immature astrocytes. We have cloned the human B-FABP gene and have mapped it to chromosome 6q22-23. We show that B-FABP mRNA is expressed in human malignant glioma tumor biopsies and in a subset of malignant glioma cell lines, as well as in human fetal retina and brain. Malignant glioma tumors are characterized by cytoplasmic bundles of glial fibrillary acidic protein (GFAP), a protein normally expressed in mature astrocytes. Establishment of malignant glioma cell lines often results in loss of GFAP. The subset of malignant glioma cell lines that express GFAP mRNA also express B-FABP mRNA. Co-localization experiments in cell lines indicate that the same cells produce both GFAP and B-FABP. We suggest that some malignant gliomas may be derived from astrocytic precursor cells which can express proteins that are normally produced at different developmental stages in the astrocytic differentiation pathway.  相似文献   

15.
The antitumor activities of recombinant human tumor necrosis factor-alpha (rH-TNF alpha) and liposome-entrapped rH-TNF alpha were evaluated in various glioma cell lines and a rat brain T9 gliosarcoma model. rH-TNF alpha had a direct cytotoxic activity against various glioma cell lines in vitro, and indirect cytotoxic activity against gliosarcoma (T9) in vivo. Liposome-entrapped rH-TNF alpha had increased direct cytotoxic activity in vitro, and against experimentally induced brain tumors in vivo. The effects in vivo were probably due to vascular damage of the tumor vessels as shown by histological examination and activation of cytotoxic macrophages as shown in vitro. These results indicate that the general or local administration of liposome-entrapped rH-TNF alpha may become a useful adjunct treatment for malignant brain tumor.  相似文献   

16.
Proteins of the fibroblast growth factor (FGF) family play diverse roles in embryonic development, angiogenesis, and wound healing. The most well studied targets of FGF activity typically are cells of mesodermal and neuroectodermal origin; in addition, expression of FGF-1 (acidic FGF) is increased at several sites of chronic immunologic injury, and recent studies show that FGF-1 also may interact with cells of the immune system. In some human T cells, FGF-1 can induce signals necessary for production of interleukin-2, a key cytokine required for T cell proliferation. To better characterize the interaction of FGF-1 with FGF receptors on T cells, a fusion protein was constructed containing a portion of the constant region of human IgG1 (Fc) at the amino terminus of FGF-1. The Fc-FGF-1 fusion protein retained FGF function as determined by stimulation of tyrosine phosphorylation and DNA synthesis in NIH 3T3 cells. Binding of the intact fusion protein to FGF receptor 1 (FGFR1) on T cells was demonstrated by immunoprecipitation of the receptor bound to Fc-FGF-1 and by flow cytometry showing binding of fusion protein to T cells expressing FGFR1. This functional Fc-FGF-1 protein should prove useful in identifying FGFR-expressing cells.  相似文献   

17.
PDGF-B released from colon tumor cells regulated tumor growth in athymic mice in a paracrine manner by inducing blood vessel formation. A positive correlation was found between expression of PDGF B-chain in cells grown in vitro and the number of factor VIII-positive blood vessels in tumors induced by three classes of colon carcinoma cell lines. Elevated expression of PDGF-B was also correlated with tumor size. Each cell line had the same mutations in the colon cancer genes APC, DCC, and p53 and had wild type c-K-ras genes (Huang et al. [1994] Oncogene, 9:3701-3706.) eliminating the possibility that any differences in tumor blood vessel formation were due to mutations and/or deletions in these genes. Colon carcinoma cells released biologically active PDGF capable of stimulating the growth of NIH3T3 cells, which was inhibited by neutralizing antisera to PDGF-AB chains. An inverse correlation was found between induction of factor VIII-positive blood vessels and expression of vascular endothelial growth factor (VEGF), while no correlation was seen with expression of either TGF alpha or k-FGF. Basic fibroblast growth factor (FGF) expression was not detected in these tumor cells. TGF beta 1 was capable of inducing PDGF-B expression in the undifferentiated U9 colon carcinoma cell line, but this sensitivity was not seen in differentiated cells. In contrast, TGF beta 1 inhibited VEGF expression in both undifferentiated cells and differentiated colon cancer cells. Thus, TGF beta 1 has two roles in the growth of undifferentiated U9 colon carcinoma cells in vivo: direct stimulation of cell proliferation as we have showed in earlier studies, and an increase in angiogenesis by inducing PDGF-B.  相似文献   

18.
Vector-mediated transfer of prodrug-activating genes provides a promising means of cancer gene therapy. In a search for more selective and more potent bioactivating enzymes for gene therapy of malignant brain tumors, the toxicity-generating capacity of the rabbit cytochrome P450 isozyme CYP4B1 was investigated. Rabbit CYP4B1, but not rat or human isozymes, efficiently converts the inert prodrugs, 2-aminoanthracene (2-AA) and 4-ipomeanol (4-IM), into highly toxic alkylating metabolites. Toxicity of these two prodrugs was evaluated in culture in parental and genetically modified rodent (9L) and human (U87) glioma cell lines stably expressing CYP4B1, and in vivo in a subcutaneous 9L tumor model in nude mice. The most sensitive CYP4B1-expressing glioma clone, 9L4B1-60, displayed an LD50 of 2.5 microM for 2-AA and 4-IM after 48 h of prodrug incubation, whereas 20 times higher prodrug concentrations did not cause any significant toxicity to control cells. Substantial killing of control tumor cells by 2-AA was achieved by co-culturing these cells with CYP4B1-expressing cells at a ratio of 100:1, and toxic metabolites could be transferred through medium. In both CYP4B1-expressing cells and co-cultured control cells, prodrug bioactivation was associated with DNA fragmentation, as assayed by fluorescent TUNEL assays and by annexin V staining. Alkaline elution of cellular DNA after exposure to 4-IM revealed extensive protein-DNA crosslinking with single-strand breakage. Growth of 9L-4B1 tumors in nude mice was inhibited by intraperitoneal injection of 4-IM with minimal side effects. Potential advantages of the CYP4B1 gene therapy paradigm include: the low concentrations of prodrug needed to kill sensitized tumor cells; low prodrug conversion by human isozymes, thus reducing toxicity to normal cells; a tumor-killing bystander effect that can occur even without cell-to-cell contact; and the utilization of lipophilic prodrugs that can penetrate the blood-brain barrier.  相似文献   

19.
OBJECTIVE: The neurofibromatosis type 2 gene is frequently mutated in sporadic meningiomas. The protein product of the neurofibromatosis type 2 gene is called schwannomin or merlin. Its expression in leptomeningeal cells from which meningiomas are derived and the characteristics of mutated forms in meningiomas, to our knowledge, have not been previously studied. METHODS: Immunoblotting and immunoprecipitation experiments with two specific antibodies were used to determine the size and subcellular distribution of schwannomin/merlin in rabbit and human brain tissue and established human leptomeningeal LTAg2B cells. Immunoblotting was used to determine the expression level of schwannomin/merlin in 14 human sporadic meningiomas. RESULTS: Both antibodies detect a protein of approximately 66 kDa, which is predominantly expressed in the Triton X-100-insoluble fraction of the brain and LTAg2B cells. The levels of schwannomin/merlin were severely reduced in eight tumors (57%) when compared with the expression levels in the human brain, LTAg2B cells, and the remaining six meningiomas. All six tumors with the normal schwannomin/merlin expression were of meningotheliomatous type. In contrast, all other histological types and one meningotheliomatous tumor with psammoma bodies were deficient in the 66-kDa schwannomin/merlin. Although nonsense mutations leading to premature stop codons are common in the neurofibromatosis type 2 gene in meningiomas, we found no evidence of truncated schwannomin/merlin forms in the tumors analyzed. CONCLUSION: The absence of complete schwannomin/merlin in almost 60% of primary sporadic meningiomas seems to be an important factor in meningioma tumorigenesis. The development of meningotheliomatous meningiomas is probably linked to alterations in other oncogenes or tumor suppressor genes.  相似文献   

20.
Malignant gliomas are characterized by an extensive invasion of tumor cells into the normal brain parenchyma. A substantial amount of data indicates that cell movement in general is regulated by specific interactions between extracellular matrix components and specific cell-surface receptors. In the present work, multicellular spheroids from 4 human glioma cell lines (U-373Mg, A-172Mg, U-251Mg and HF-66) were confronted with normal rat brain cell aggregates in vitro, which resulted in a progressive invasion of tumor cells into the brain aggregates. The co-cultures were then sectioned and immuno-stained for specific extracellular matrix components (laminin, fibronectin and collagen type IV) and for specific cell-surface receptors which bind to these components (integrins beta1, beta4, alpha3, alpha6). In addition, flow-cytometric measurements and Northern blot analyses showed expression of several different integrins within the cell lines. The alpha3 subunit was expressed strongly in all cell lines. Whereas the beta1 subunit was expressed weakly in exponentially growing monolayer cultures, it showed a pronounced expression in multicellular spheroids, indicating that the integrin expression may vary depending on the micro-environment within a tumor. Furthermore, normal brain tissue was able to produce laminin when confronted with the glioma cells, which also was observed for fibronectin and collagen type IV. The relevance of our observations to the in vivo situation was investigated further by immuno-staining 5 human glioma biopsy samples for laminin. In some areas of the tumors, specific deposits of laminin were observed. In conclusion, we have shown that normal brain tissue has the ability to produce extracellular matrix components, such as laminin, collagen type IV and fibronectin, when confronted with invading glioma cells. Our results show that the glioma cells express specific integrins which can interact with these extracellular matrix components. Such interactions may facilitate tumor cell migration and invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号