首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2020,46(9):13502-13510
We observe microscopic damage progression in un-notched unidirectional SiC–SiC ceramic matrix composite laminates loaded monotonically in tension. In situ tensile testing was conducted in air at room temperature and combined with X-ray tomography imaging. The unidirectional specimens tested were novel double-reduced dogbones designed to develop matrix cracks in the synchrotron field of view. Multiple matrix cracks that rapidly traversed the section of each specimen were observed through the volume until the specimens broke into two pieces. The details of each matrix crack were tracked at each stress increment to better understand how the cracks evolve under load. One of the unidirectional specimens contains a matrix crack that displays a sharp 90° turn along the fiber direction in its final crack path. Fiber breaks were observed and several fibers in the unidirectional specimen showed multiple breaks. Fiber break opening was measured for each fiber break and the average fiber break opening for each stress increment is reported. The location and pullout distance of fiber breaks surrounding a matrix crack, as well as matrix crack spacing, are of modeling interest and are reported.  相似文献   

2.
Interlaminar fracture properties of melt-infiltrated woven SiC/SiC ceramic matrix composites were investigated using traditional and wedge-loaded double cantilever beam methods. The two methods produced comparable GIC results for some specimens. The difference in boundary conditions between the two methods appeared to influence the crack propagation path. The DCB method, having free-end boundary condition, allowed more interaction between the crack and the composite microstructure than the wedge method did. The effect of fiber tow layout sequence had an effect on the interlaminar properties. Higher toughness was observed for the orientation where crack propagation occurs between planes with more transverse tows. Jump-arrest phenomenon was found to have higher significance on the rising R-curve behavior than fiber bridging.  相似文献   

3.
Alumina/zirconia matrix composites with platinum-coated sapphire fibers were fabricated using the technology of reaction bonding of aluminum oxide (RBAO) as the synthesis route. The interfacial behavior of both sintered and annealed specimens was investigated by crack path observations and fiber pushout tests. The results show that precious metals like platinum or related alloys can be used as high-temperature interphases for oxide/oxide composites. Weak interfaces were obtained both between fiber and coating as well as between matrix and coating, which should be suitable to achieve a damage-tolerant behavior of the composite.  相似文献   

4.
The paper presents an experimental study on chloride penetration in cracked mortar specimens. A mechanical expansive core was used to generate cracks of constant width across the thickness of the sample. Sixteen specimens with crack openings ranging from 6 to 325 µm were subjected to a test designed to allow chloride diffusion along the crack path for a period of 14 days. Chloride penetration tests were carried out on mortars at 28 days and 2 years. Relationships between crack opening and chloride–ion diffusion along a crack are presented and discussed. The results show that crack opening significantly affects chloride–ion diffusion along a crack. Overall, chloride diffusion along a crack decreases with crack opening. On the other hand, no chloride diffusion occurs in cracks with an opening of 30 µm or less. This crack-opening threshold agrees with the critical crack opening obtained from a stress-displacement curve of a mortar sample subjected to uniaxial tension. At crack openings greater than the threshold value, chloride diffusion along the crack path depends on mortar age. This result suggests that self-healing could reduce chloride diffusion in cracks.  相似文献   

5.
为探究纤维体积掺量对聚乙烯醇纤维增强水泥基复合材料(PVA-ECC)断裂过程的影响,基于50 mm的分离式霍普金森压杆(SHPB)装置对不同纤维体积掺量(0%、0.75%、1.50%、2.25%、3.00%)的PVA-ECC中心切槽半圆盘弯曲(NSCB)试件进行冲击试验,同时结合超高速数字图像(DIC)相关试验系统对PVA-ECC材料的动态断裂过程进行试验研究,得到了预制裂纹尖端张开位移的变化规律以及各组试件的临界裂缝尖端张开位移(CTODC)。结果表明,当不添加PVA纤维或添加较少(小于1.50%)时,裂尖宏观裂纹基本出现在裂尖荷载的峰值时刻处,而随着PVA纤维掺量的增加,裂尖宏观裂纹的出现显著早于裂尖荷载的峰值时刻,并且纤维体积掺量越大,裂尖宏观裂纹出现得越早,裂纹扩展至完全断裂的时间也显著增加。添加聚乙烯醇纤维可以显著提高混凝土试件的CTODC值,提高试件的阻裂能力,相同冲击荷载下,体积掺量为2.25%的聚乙烯醇纤维试件具有较大的CTODC值。  相似文献   

6.
《Polymer Composites》2017,38(12):2631-2641
Experimental and computational studies of the composite laminates with thin center notches under axial compressive loading are carried out. A series of compressive testing of the composites with different crack lengths and angles between the loading vector and 0° fiber direction were conducted. The damage mechanisms as well as load–displacement curves are obtained from the test to analyze the effects of crack dimensions on stress distribution and ultimate load. It was shown that the compressive strength of composites drastically reduces when the crack angle goes from 0° to 90°. By studying the fracture surfaces of the tested specimens, all initial cracks within the laminates are found to extend without a straight crack path until fibers fracture simultaneously. Cases that involve crack propagation are modeled for different crack dimensions with a 3D progressive damage finite element analysis using the Abaqus. Numerical simulations qualitatively reproduce the general observations made in the laboratory experiments. POLYM. COMPOS., 38:2631–2641, 2017. © 2015 Society of Plastics Engineers  相似文献   

7.
杨平 《硅酸盐通报》2018,37(2):737-743
对混凝土预制双裂隙板试件进行了双轴压缩试验,研究了裂隙倾角以及岩桥倾角对双裂隙的扩展演化影响.通过在裂隙尖端贴放应变片,分析了裂隙扩展与应力应变关系,探讨了裂隙尖端应变集中对裂隙扩展演化的作用规律.试验结果表明,裂隙倾角以及岩桥倾角对裂隙的扩展、贯通有较大影响.实验结果共观测到7种裂纹贯通模式(T1和T2;S1和S2;TS1、TS2和TS3)及两种贯通失败模式(剪切失败和拉伸-剪切失败),且随着岩桥角的增加,裂纹贯通模式由剪切裂纹贯通到翼型-剪切复合式贯通,然后再到翼形裂纹贯通逐渐转化.应力应变曲线与裂隙扩展贯通密切相关,拉应变集中是翼形裂纹产生的原因,而压应变集中则是引起剪切裂纹产生的原因.  相似文献   

8.
Melt infiltrated SiC/SiC ceramic matrix composite unidirectional (UD) composite specimens were imaged under load using X-ray microtomography techniques in order to visualize the evolution of damage accumulation and to quantify damage mechanisms within the composite such as matrix cracking and fiber breaking. The data obtained from these in situ tensile tests were used in comparison with current models and literature results. Three-dimensional (3D) tomography images were used to measure the location and spacing of matrix cracking that occurred at increasing stress increments during testing within two UD composite specimens. The number of broken fibers and the location of each fiber break gap that occurred within the volume of both specimens were also quantified. The 3D locations of fiber breaks were correlated with the location of each matrix crack within the volume of the specimen and it was found that at the stress scanned directly before failure, most of the fiber breaks occur within 100 microns of a matrix crack.  相似文献   

9.
Laminates with alternating layers are well known from nature. The strongly bonded alumina/zirconia (Al2O3/ZrO2) layers can combine high fracture resistance with high strength and stiffness when properly tailored. The presence of compressive residual stresses formed in Al2O3 layers can suppress and deflect cracks propagating through the layers. The crack path is governed by both the elastic properties and the internal stress field of individual layers. The laminates with various layer-thickness ratios ranging from 0.1 to 3 were used to investigate the effect of residual stresses and influence of crack formation pattern on the crack path development. The indentation surface cracks observed in various alumina-zirconia laminates exhibit the same crack deflection independently on the level of internal stresses. The crack deflection observed on the fracture surfaces of bending specimens was related to the indentations cracks. The complicated crack path was explained experimentally by 3D reconstruction with the support of numerical simulations.  相似文献   

10.
The electrodeposition of saturated copolymers onto carbon fibers is investigated, focusing particular attention on improvement of shear and impact properties of the corresponding composites. Carbon fibers are electrocoated with poly(ethylene-co-acrylic acid) and poly(methyl vinyl ether-co-maleic anhydride) from aqueous media, and fabricated into epoxy composites. The results of interlaminar shear strength (ILSS) tests, initially employed to assess fibermatrix adhesion, are vitiated by the occurrence of mixed-mode failure. Interfacial shear strength (IFSS) is hence evaluated by stressing single-fiber composite specimens to obtain ultimate aspect ratios of the fiber fragments. The data are combined with fiber strengths by a recently developed statistical theory (1) to yield a distribution for IFSS. Both copolymer interphases improve fiber-matrix bonding to an extent greater even than that obtained with commercial fiber surface treatment. Good fiber-matrix adhesion is further apparent from SEM studies of fractured ILSS test specimens. A key to this improved adhesion is the interpenetration of matrix resin and interphase polymer, revealed by electron microprobe analysis (2). Notched Izod impact strength is also increased over uncoated-fiber composites. These copolymer interphases behave as deformable interlayers, absorbing impact energy and blunting the growing crack tip. Further energy is absorbed in deflecting the crack through a more tortuous path. Simultaneous improvements in impact and shear strengths are thus obtained, which may be further enhanced by optimizing the electrodeposition parameters and the coating thickness. The influence of the interphase on composite properties is better understood from this study, paving the way for refinement in interphase design.  相似文献   

11.
The fatigue behavior and fracture toughness of injection molded short-glass-fiber-reinforced poly(vinyl chloride) (sgfr-PVC) were investigated using the Crack Layer approach and fractography, Fatigue crack propagation (FCP) experiments in single-edge-notched (SEN) specimens were conducted concurrently with microscopic observations. Fracture was observed to propagate as a main crack surrounded by a layer of damage. The magnitude of damage was controlled by the content of glass fiber, which in turn controlled crack reduced acceleration and fracture toughness. FCP behavior was successfully described by the Crack Layer theory, which accounts for the damage associated with crack propagation. In absence of significant interfacial bonding, mechanical fiber/matrix interlocking provided the main resistance to crack propagation. Fiber-induced matrix deformation and fiber pull-out appeared to be the dominant energy absorbing mechanisms.  相似文献   

12.
Previous results have shown that tows of SiC Nicalon fibers are sensitive to the phenomenon of delayed failure, at temperatures below 700°C. The present paper examines the static fatigue of Hi-Nicalon and Hi-Nicalon S when subjected to constant load, at temperatures between 500° and 800°C in air. Multifilament tows and single filaments were tested. Experimental data show that the rupture times of tows depend on the applied stress according to the conventional power law t σ n = A . In contrast, the stress-rupture time data obtained on single filaments exhibit significant scatter. A model based on slow crack growth in single filaments shows that the stress-rupture of fiber tows follows the conventional time power law. The dependence on temperature was introduced. The model allowed sound calculations of tow lifetimes and characteristics of the slow crack growth phenomenon to be extracted from the tow stress-rupture time data.  相似文献   

13.
The fracture behavior of several short glass fiber reinforced thermoplastics has been studied. The fracture toughness of these materials may be related to local crack propagation mode, which is found to be highly rate dependent. At low test rates the crack growth in the reinforced polymers tend to follow a fiber avoidance mode, creating a greater area of new surfaces, which in conjunction with greater degree of interfacial debonding and fiber pullout friction leads to a higher fracture resistance. An increase in loading rate in general results in a more straight and flat crack path, as well as a lesser extent of fiber debonding and pullout. Therefore the fracture toughness is reduced although the frequency of fiber breakage is increased. The fracture behavior of these short fiber reinforced polymers appears to be dictated by the matrix properties when the loading rate is high.  相似文献   

14.
This paper investigates the role of material properties on crack path selection in adhesively bonded joints. First, a parametric study of directionally unstable crack propagation in adhesively-bonded double cantilever beam specimens (DCB) is presented. The results indicate that the characteristic length of directionally unstable cracks varies with the Dundurs' parameters characterizing the material mismatch. Second, the effect of interface properties on crack path selection is investigated. DCB specimens with substrates treated using various surface preparation methods are tested under mixed mode fracture loading to determine the effect of interface properties on the locus of failure. As indicated by the post-failure analyses, debonding tends to be more interfacial as the mode II fracture component in the loading increases. On the other hand, failures in specimens prepared with more advanced surface preparation techniques appear more cohesive for given loading conditions. Using a high-speed camera to monitor the fracture sequence, DCB specimens are tested quasi-statically and the XPS analyses conducted on the failure surfaces indicate that the effect of crack propagation rate on the locus of failure is less significant when more advanced surface preparation techniques are used. The effect of asymmetric interface property on the behavior of directionally unstable crack propagation in adhesive bonds is also investigated. Geometrically-symmetric DCB specimens with asymmetric surface pretreatments are prepared and tested under low-speed impact. As indicated by Auger depth profile results, the centerline of the crack trajectory shifts slightly toward the interface with poor adhesion due to the asymmetric interface properties. Third, through varying the rubber content in the adhesive, DCB specimens with various fracture toughnesses are prepared and tested. An examination of the failure surfaces reveals that directionally unstable crack propagation is more unlikely to occur as the toughness of the adhesive increases, which is consistent with the analytical predictions that were discussed using an energy balance model.  相似文献   

15.
In this research, the effects of nanosilica and steel fibers on the impact resistance of ground granulated blast furnace slag based self-compacting alkali-activated concrete were investigated. Nanosilica volume fraction was kept constant at 2%. Two types of hooked-end steel fibers (Kemerix 30/40 and Dramix 60/80) and steel fiber volume contents (0.5% and 1%) were utilized to highlight the combined effects of nanosilica and steel fiber on the impact behavior. The fresh state and mechanical properties such as slump flow, L-box, V-funnel, compressive strength, modulus of elasticity, splitting tensile strength, and flexural strength were evaluated. The microstructure of the samples was examined using a scanning electron microscope. The impact resistance of the specimens was measured by a drop-weight test. Acceleration-time and force-time graphs were plotted and evaluated together with the crack photos of the specimens for the first and failure impactor drops. The incorporations of nanosilica and steel fiber improved splitting tensile strength, flexural strength, impact resistance, and energy absorption capacity, while they decreased compressive strength and modulus of elasticity. For the specimens without nanosilica and with 2% nanosilica, the impact energy improvements were five times and 12.5 times higher for 0.5% short fibrous, 20.5 times and 44.5 times higher for 1% short fibrous, 23.5 times and 31 times higher for 0.5% long fibrous, and 64 times and 144.5 times higher for 1% long fibrous specimens than the specimens without nanosilica and steel fiber, respectively. The long fibers were found more effective in mechanical strength and impact energy than short fibers, and the reinforcing efficiency of fibers enhanced with higher steel fiber volumes. The combined utilization of nanosilica and steel fibers have the potential to delay the crack formation and dissipate energy to the surrounding zones, and this potential increased with higher steel fiber lengths and volume ratios.  相似文献   

16.
In this work, a non-local failure model was proposed and implemented into a finite element code. It was then used to simulate the crack evolution in ceramic materials subjected to thermal shock. By using this numerical model, the initiation and propagation of cracks in water quenched ceramic specimens were simulated. The numerical simulations reproduced faithfully the crack patterns in ceramic specimens underwent quenching tests. The periodical and hierarchical characteristics of the crack patterns were accurately predicted. The numerical simulations allow a direct observation on whole the process of crack initiation and growth, which is quite a difficult task in experimental studies. The failure mechanisms and the fracture procedure are discussed according to the numerical results obtained from the simulations. It is shown that the numerical model is simple, robust, accurate and efficient in simulating crack evolution in real structures under thermal shock.  相似文献   

17.
王辉明  李汝飞  邓平贵 《硅酸盐通报》2022,41(12):4202-4213
为研究钢纤维混凝土损伤破坏过程和裂纹发展演化机理,基于分形理论和扩展有限元法,建立钢纤维混凝土立方体抗拉试验细观有限元模型和切口梁三点弯曲试验有限元模型,以相关试验测试结果为基础,比较验证了所建有限元分析模型的可靠性。以裂纹分形维数表征钢纤维混凝土损伤演化过程,考察不同钢纤维体积掺量和长度、粗骨料形状等重要因素对钢纤维混凝土损伤演化过程的影响。结果表明,基于裂纹分形维数的损伤值可以较好地反映钢纤维混凝土的损伤演化过程及特征,钢纤维体积掺量、长度的增加和骨料形状的不规则化会延缓钢纤维混凝土立方体试件的损伤演化过程,钢纤维体积掺量、初始裂纹距跨中距离的增加和初始裂纹缝高比的减小可在较小程度上延缓钢纤维混凝土切口梁的损伤演化过程。  相似文献   

18.
SiC-based fibers are subjected to slow crack growth, a crack growth mechanism activated by stresses and the chemical environment, as identified by static fatigue testing. Such tests can be performed on filaments or bundles. Although both types of specimens show a similar lifetime variation, testing of bundles is often preferred. This work compares the scatter of lifetimes predicted for filaments and for tows using a dedicated Monte Carlo simulation tool relying on the following hypotheses: The stress applied to a single filament can be defined, whereas the size of its most critical flaw cannot; on a bundle, neither the applied stress nor the strength of the critical filament (which triggers the cascade failure and the tow failure) can be defined. Depending on the parallelism of fibers inside the bundle and their strength dispersion, the lifetime scatter can be narrower for filaments compared to tows or vice versa.  相似文献   

19.
Validity of the compliance matching procedure has been examined for short fiber composites experimentally by studying the behavior of damaged specimens. Comparison between the behavior of damaged and fresh specimens shows that the load—COD (crack mouth opening displacement) curve and fracture load of a damaged specimen are different from that of a fresh specimen having a machined crack of length equal to the estimated crack length in the damaged specimen. However, it has been clearly established that the secondary compliance of the damaged specimen can be used to accurately estimate the extent of damage to the specimen by earlier loading. Therefore, the use of the compliance matching procedure is justified for estimating instantaneous crack length in short fiber composites.  相似文献   

20.
A model for predicting fracture resistance of fiber reinforced concrete   总被引:3,自引:0,他引:3  
A theoretical model is presented to predict the crack propagation resistance of fiber reinforced cement based composites. A crack in the matrix is divided into a traction free zone, fiber bridging zone and the matrix process zone. The crack closing pressure due to fibers depends on the (Mode I) crack opening displacement (COD). A method is suggested to estimate this relationship from the pull-out tests. Although calculations of COD are based on linear elastic fracture mechanics concepts, the energy absorbed in the fiber bridging zone is included in the analysis. Theoretical results are compared with the experimental data of notched beam and double cantilever beam specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号