首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Simulations of tricalcium silicate (C3S) hydration using a kinetic cellular automaton program, HydratiCA, indicate that the net rate depends both on C3S dissolution and on hydration product growth. Neither process can be considered the sole rate-controlling step because the solution remains significantly undersaturated with respect to C3S yet significantly supersaturated with respect to calcium silicate hydrate (C–S–H). The reaction rate peak is attributed to increasing coverage of C3S by C–S–H, which reduces both the dissolution rate and the supersaturation of C–S–H. This supersaturation dependence is included in a generalized boundary nucleation and growth model to describe the kinetics without requiring significant impingement of products on separate cement grains. The latter point explains the observation that paste hydration rates are insensitive to water/cement ratio. The simulations indicate that the product layer on C3S remains permeable; no transition to diffusion control is indicated, even long after the rate peak.  相似文献   

2.
The initial hydration of C3S in paste form at room temperature was studied. The process is initiated by a short lasting rapid hydration in which about 1 – 2% of C3S is hydrated and a hydrate with low C/S and high H/S ratio is formed. After a subsequent induction period of 4 hours a renewed rapid hydration is observed in which a hydrate of constant stoichiometric composition, independent on the time of hydration is formed. This hydrate has a higher C/S and lower H/S ratio than the one formed initially. The liquid phase stays supersaturated with respect to calcium hydroxide for several hours after the induction period is terminated.  相似文献   

3.
The addition of a finely-ground ion-exchange resin makes it possible to modify the hydration kinetics of C3S pastes. Analyses of the liquid phase in pastes and more dilute suspensions show that the resin exchanges calcium ions for sodium ions very rapidly during the early stage of hydration and therefore the concentration of silica in solution increases. The resin impacts the hydration of C3S by other mechanisms which depends on the resin quantity added. For a high resin quantity, the induction period is very short, but the longer-term hydration is enhanced compared to a reference sample without resin. We hypothesize that the surface of the resin can provide sites for the nucleation and growth of C-S-H hydrates and/or portlandite far away from the surface of the C3S grains. This consequently increases the quantity of hydrates that can precipitate before a continuous hydrate layer forms over the surfaces of C3S particles.  相似文献   

4.
The hydration of tricalcium silicate (C3S) was studied by secondary neutrals mass spectrometry (SNMS), a method that enables determination of the Ca/Si ratio of the formed calcium silicate hydrate (C-S-H) phase with an extremely low information depth. It was found that the magnitude of this parameter within the hydrate layer formed at the surface of the nonhydrated C3S is not constant and increases with increasing distance from the liquid-solid interface. It was also found that, at a constant distance from the surface, the Ca/Si ratio declines with hydration time. The kinetics of the hydration process is characterized by a very fast initial reaction, followed by a dormant period and a subsequent period of renewed hydration. The rate of hydration becomes distinctly accelerated by elevated temperature and retarded by the presence of sucrose, while NaCl affects the initial hydration kinetics only to a small degree.  相似文献   

5.
Results of following the quantities of free Ca(OH)2 and of tricalcium silicate (C3S) during the hydration of C3S, and also the influence of the presence of free CaO on this reaction are in accordance with the hypothesis of Stein & Stevels with regard to the hydration of C3S. at the first contact between C3S and water, a surface hydrate, invisible by electron microscope methods, is considered to be formed and to retard the reaction strongly. This hydrate is thought to change into one which retards the hydration reaction less and changes later into a third hydrate, tobermorite gel.  相似文献   

6.
The effect of EDTA, a calcium chelating agent, on the early hydration of Portland cement, C3Sand β-C2S has been studied by solution analysis and electron microscopy. EDTA is a retarded of cement hydration. Under normal conditions of hydration, the silica levels in solution are very low (<0.05 M) but in the presence of EDTA an initial flush of silica appears in the bulk aqueous phase. On continued hydration, following the saturation of EDTA with calcium, the appearance of ‘free’ calcium causes precipitation of C-S-H gel from the bulk solution and changes in microstructure of the colloidal gel around clinker particles in C3S and β-C2S pastes are observed. The action of EDTA as a retarding admixture is explained in terms of the membrane model of cement hydration.  相似文献   

7.
The hydration kinetics of tricalcium silicate (C3S) has been the subject of much study, yet the experimentally observed effects of the water‐to‐cement (w/c) ratio and particle size distribution have been difficult to explain with models. Here, we propose a simple hypothesis that provides an explanation of the lack of any significant effect of w/c on the kinetics and for the strong effect of the particle size distribution on the amount of early hydration associated with the main hydration peak. The hypothesis is that during the early hydration period the calcium–silicate–hydrate product forms only in a reaction zone close to the surface of the C3S particles. To test the hypothesis, a new microstructure‐based kinetics (MBK) model has been developed. The MBK model treats the C3S particle size distribution in a statistical way to save computation time and treats the early hydration as essentially a boundary nucleation and growth process. The MBK model is used to fit kinetic data from two published studies for C3S with different size distributions, one for alite (impure C3S) pastes and one for stirred C3S suspensions. The model is able to fit all the data sets with parameters that show no significant trend with particle size, providing support for the reaction zone hypothesis.  相似文献   

8.
Calcium chloride (CaCl2) is one of the most recognized and effective accelerators of hydration, setting, and early strength development in portland cement and tricalcium silicate (C3S) pastes. The mechanisms responsible for this acceleration, as well as the microstructural consequences, are poorly understood. Soft X-ray transmission microscopy has recently been applied to the study of cementitious materials and allows the observation of hydration in situ over time. This technique was applied to the examination of tricalcium silicates hydrating in a solution containing CaCl2. It appears that CaCl2 accelerates the formation of “inner product” calcium silicate hydrate (C-S-H) with a low-density microstructure.  相似文献   

9.
The combined effect of lignosulfonate and sodium carbonate on the hydration of C3A and C3ANa2O solid solution was examined by DTG and TG curves, by XRD analysis and by zeta potential measurements. It is confirmed that the simultaneous addition of lignosulfonate and carbonate completely blocks the C3A hydration with an induction period whose length is proportional to the percentage of admixtures. On the other hand, no induction period was observed in the hydration of C3ANa2O solid solution in the presence of both lignosulfonate and carbonate. The effect of the admixtures on the zeta potential is substantially the same for C3A and C3ANa2O solid solution. The liquefying effect of NC and lgs combined addition seems to be more pronounced on C3A than on C3ANa2O solid solution.  相似文献   

10.
Hydration characteristics of tricalcium aluminate and tricalcium aluminate + gypsum were studied following addition of 0.5, 1.0, 5.0 or 10.0% triethanolamine (TEA) at a solution/C3A ratio of 1.0 after hydration periods of 1 to 60 min. TEA accelerated the hydration of C3A to the hexagonal aluminate hydrate and its conversion to the cubic aluminate hydrate. The rate of hydration increased with increased amounts of TEA, which also accelerated the formation of ettringite in the C3A-gypsum-H2O system.  相似文献   

11.
Calcined clay blended cements play a major role in cement industry's strategy to reduce CO2 emissions. During their hydration, an accelerated aluminate reaction is often observed to affect the sulfate balance. The objective of this study was to provide insights into the influence of different calcined clays on the hydration of cubic tricalcium aluminate (C3A). A cementitious model system consisting of cubic C3A, quartz powder, calcium sulfate and a model pore solution was investigated. The influence of three different calcined clays and one nanolimestone was examined by a successive replacement of the quartz powder and variation of the calcium sulfate. Heat flow and hydrate phase development were followed by isothermal calorimetry and quantitative in-situ X-ray diffraction. Accelerated ettringite formation and sulfate depletion were observed for all calcined clays, while the nanolimestone exhibited the opposite effect. It was found that adsorption of SO4 ions and/or Ca-SO4-complexes at the surface of calcined clay particles is the main factor inhibiting retardation of the C3A hydration in absence of a silicate reaction. In the Al-rich systems a retardation through sulfate adjustment seems to be impeded by additional Al ions, which react with Ca adsorbed onto and leached from the C3A surface.  相似文献   

12.
The knowledge of the aqueous phase composition during the hydration of tricalcium silicate (C3S) is a key issue for the understanding of cement hydration. A new in situ method of computing calcium ion concentration from the measurement of the electrical conductivity on paste was coupled to isothermal calorimetry and BET measurements to get new insights on the early hydration of C3S. Ion concentrations of the aqueous phase are mainly dependent on the degree of hydration and the water to C3S ratio. In the case of C3S paste, the calcium and silicon concentrations determined at low degrees of hydration can be related to the equilibrium curve of C-S-H having C/S = 1.27 and named C1.27SHy. It is expected that C1.27SHy thermodynamically controls the aqueous phase composition at this early stage. Indeed, the formation of C1.27SHy is quasi-immediate when C3S is in contact with water inducing a very rapid increase of the specific surface area that remains constant during the induction period. At higher degrees of hydration, the aqueous phase composition departs from the C1.27SHy equilibrium curve. C1.27SHy appears to be a metastable C-S-H that could be related to an intermediate phase previously reported. The quasi-immediate precipitation of C1.27SHy on C3S surface explains why calcium and silicon concentrations remain low during early hydration even though C3S is strongly undersaturated. This also agrees with the control of the end of the induction period by the nucleation and growth of more stable C-S-H.  相似文献   

13.
This study was performed to understand the influence of a critical amount of CA on the kinetics of C3S hydration. For this purpose, monoclinic C3S was blended with 15 wt.% CA and investigated by heat flow calorimetry and in situ XRD at 23°C at a water to cement ratio of 0.5. The binary mixture shows 3 distinct heat flow maxima where the underlying C3S dissolution is proceeding stepwise. The C3S dissolution rates during the 3 steps are varying strongly, depending on the hydrate phase precipitated during the respective reaction step. Comparison of these dissolution rates with a pure C3S reference sample allows the conclusion that the dissolution rate of pure C3S after the heat flow maximum might be governed by either the remaining available reactive surface of C3S or a diffusion‐controlled process, which would both be influenced by the respective hydrate phase precipitating on the C3S surface.  相似文献   

14.
Impure tricalcium silicate (C3S) in portland cement may contain various foreign ions. These ions can stabilize different polymorphs of C3S at room temperature and may affect its reactivity. In this paper, the effects of magnesium and zinc on the polymorph type, hydration kinetics, and the hydrate morphology of C3S were investigated. The pure C3S has the T1 structure while magnesium and zinc stabilize polymorphs M3 and T2/T3, respectively. The two elements have distinct effects on the hydration kinetics. Zinc increases the maximum heat released. Magnesium increases the hydration peak width. The C–S–H morphology is modified, leading to longer needles in the presence of zinc and thicker needles in the presence of magnesium. Zinc is incorporated into C–S–H, while magnesium is only incorporated slightly, if at all, but rather seems to inhibit nucleation. Implementing experimentally measured parameters for C–S–H nucleation and growth in the μic hydration model captured well the observed changes in hydration kinetics. This supports C–S–H nucleation and growth to be rate controlling in the hydration of C3S.  相似文献   

15.
The hydration of C2S, C3S, C3A, C4AF and type 1 portlant cement in the presence of calcium lignosulfonate and salicylic acid was studied at a high(20/1) water-cement ratio. The effect of these admixtures on the development, microstructure and surface area of the hydration products was investigated.  相似文献   

16.
Changes in C3S hydration in the presence of cellulose ethers   总被引:1,自引:0,他引:1  
The influence of cellulose ethers (CE) on C3S hydration processes was examined in order to improve our knowledge of the retarding effect of cellulose ethers on the cement hydration kinetics. In this frame, the impacts of various cellulose ethers on C3S dissolution, C-S-H nucleation-growth process and portlandite precipitation were investigated. A weak influence of cellulose ethers on the dissolution kinetics of pure C3S phase was observed. In contrast, a significant decrease of the initial amount of C-S-H nuclei and a strong modification of the growth rate of C-S-H were noticed. A slowing down of the portlandite precipitation was also demonstrated in the case of both cement and C3S hydration. CE adsorption behavior clearly highlighted a chemical structure dependence as well as a cement phase dependence. Finally, we supported the conclusion that CE adsorption is doubtless responsible for the various retarding effect observed as a function of CE types.  相似文献   

17.
Two types of carbon‐based materials, i.e., mesoporous carbon and HNO3‐oxidized carbon nanotubes, with nearly the same specific surface area and abundant in surface oxygen‐containing functional groups were selected in order to examine their effect on the hydration of tricalcium silicate (C3S), the main portland cement component, in early stages. Different methods, including XPS and TG‐MS analyses, electrokinetic potential measurements, as well as determination of adsorption capacity for calcium ions from aqueous solutions, were used to investigate the physicochemical surface properties of the selected carbon‐based materials. It was found that the carbon‐based materials with high specific surface area and rich in oxygen‐containing functional groups on their surfaces have a catalytic effect on early C3S hydration. It was observed that the modification of C3S paste with the selected materials added in high concentrations (1 wt% and higher) led to an increase in the rate and degree of C3S hydration in the early stages. The mechanism of early C3S hydration accelerated by carbon‐based materials rich in surface functional groups was clarified by the example of the mesoporous carbon. It was found that the oxygen‐containing functional groups present on the carbon surface have both an influence on the content of calcium ions in the aqueous phase of the C3S paste and an indirect positive effect in relation to the specific surface of C3S.  相似文献   

18.
The focus of this study is to elucidate the role of particle size distribution (PSD) of metakaolin (MK) on hydration kinetics of tricalcium silicate (C3S–T1) pastes. Investigations were carried out utilizing both physical experiments and phase boundary nucleation and growth (pBNG) simulations. [C3S + MK] pastes, prepared using 8%mass or 30%mass MK, were investigated. Three different PSDs of MK were used: fine MK, with particulate sizes <20 µm; intermediate MK, with particulate sizes between 20 and 32 µm; and coarse MK, with particulate sizes >32 µm. Results show that the correlation between specific surface area (SSA) of MK's particulates and the consequent alteration in hydration behavior of C3S in first 72 hours is nonlinear and nonmonotonic. At low replacement of C3S (ie, at 8% mass), fine MK, and, to some extent, coarse MK act as fillers, and facilitate additional nucleation and growth of calcium silicate hydrate (C–S–H). When C3S replacement increases to 30% mass, the filler effects of both fine and coarse MK are reversed, leading to suppression of C–S–H nucleation and growth. Such reversal of filler effect is also observed in the case of intermediate MK; but unlike the other PSDs, the intermediate MK shows reversal at both low and high replacement levels. This is due to the ability of intermediate MK to dissolve rapidly—with faster kinetics compared to both coarse and fine MK—which results in faster release of aluminate [Al(OH)4] ions in the solution. The aluminate ions adsorb onto C3S and MK particulates and suppress C3S hydration by blocking C3S dissolution sites and C–S–H nucleation sites on the substrates’ surfaces and suppressing the post-nucleation growth of C–S–H. Overall, the results suggest that grinding-based enhancement in SSA of MK particulates does not necessarily enhance early-age hydration of C3S.  相似文献   

19.
Pozzolanic mineral additives, such as silica fume (SF) and metakaolin (MK), are used to partially replace cement in concrete. This study employs extensive experimentation and simulations to elucidate and contrast the influence of SF and MK on the early age hydration rates of tricalcium silicate (triclinic C3S), the major phase in cement. Results show that at low replacement levels (i.e., ≤10%), both SF and MK accelerate C3S hydration rates via the filler effect, that is, enhanced heterogeneous nucleation of the main hydration product (C–S–H: calcium‐silicate‐hydrate) on the extra surfaces provided by the additive. The filler effect of SF is inferior to that of MK because of agglomeration of the fine particles of SF, which causes significant reduction (i.e., up to 97%) in its surface area. At higher replacement levels (i.e., ≥20%), while SF continues to serve as a filler, the propensity of MK to allow nucleation of C–S–H on its surface is substantially suppressed. This reversal in the filler effect of MK is attributed to the abundance of aluminate [Al(OH)4?] ions in the solution—released from the dissolution of MK—which inhibit topographical sites for C–S–H nucleation and impede its subsequent growth. Results also show that in the first 24 hours of hydration, MK is a superior pozzolan compared to SF. However, the pozzolanic activities of both SF and MK are limited and, thus, do not produce significant alterations in the early age hydration kinetics of C3S. Overall, the outcomes of this study provide novel insights into the mechanistic origins of the filler and pozzolanic effects of SF and MK, and their impact on cementitious reaction rates.  相似文献   

20.
The initial hydration of C3S was found to be stimulated by adding to the paste prehydrated C3S and by lowering the Ca++ concentration of the liquid phase with oxalic acid. An addition of crystalline calcium hydroxide did not alter the duration of the induction period. Based on these findings the origin of the induction period in C3S hydration is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号