首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Voltage-gated K+ channel (Kv) pore-forming (alpha) subunits of the Kv1 and Kv4 subfamilies have been cloned from heart cDNA libraries, and are thought to play roles in the generation of the transient outward K+ current, Ito. Heterologous expression of these subunits in Xenopus oocytes, however, reveals K+ currents that are quite distinct from Ito. In the experiments here, the detailed time- and voltage-dependent properties of the currents expressed in mammalian cell lines and in cardiac myocytes by Kv1.4 and Kv4.2 were examined and compared to previous findings in studies of oocytes, as well as to Ito characterized in various myocardial cells. As in oocytes, expression of Kv1.4 in HEK-293, Ltk- or neonatal rat ventricular cells reveals rapidly activating K+ currents. In contrast to the currents in oocytes, however, there are two components of inactivation of the Kv1.4-induced currents in mammalian cells, and both components are significantly slower in myocytes than in either HEK-293 or Ltk- cells. In addition, in all three cell types, recovery of Kv1.4 from steady-state inactivation is very slow, proceeding with mean time constants in the range of 6-8 s. The properties of Kv4.2-induced currents also vary with cell type and, importantly, the rates of activation, inactivation and recovery from inactivation are significantly faster in mammalian cells than in Xenopus oocytes. In HEK-293, Chinese hamster ovary (CHO) and neonatal rat ventricular cells, for example, the currents recover from steady-state inactivation with mean (+/-SD) time constants of 153+/-32 (n=12), 245+/-112 (n=10) and 86+/-38 (n=11) ms, respectively; therefore, recovery proceeds 5-10 times faster than observed for Kv4.2 in oocytes. These results emphasize the importance of the cellular expression environment in efforts to correlate endogenous K+ currents with heterologously expressed K+ channel subunits. In addition, the finding that Kv alpha subunits produce distinct K+ currents in different cells suggests that cell-type-specific associations with endogenous Kv alpha or accessory beta subunits and/or post-translational processing play roles in determining the properties of functional K+ channels.  相似文献   

3.
4.
Free radical-induced oxidant stress has been implicated in a number of physiological and pathophysiological states including ischemia and reperfusion-induced dysrhythmia in the heart, apoptosis of T lymphocytes, phagocytosis, and neurodegeneration. We have studied the effects of oxidant stress on the native K+ channel from T lymphocytes and on K+ channels cloned from cardiac, brain, and T-lymphocyte cells and expressed in Xenopus oocytes. The activity of three Shaker K+ channels (Kv1.3, Kv1.4, and Kv1.5), one Shaw channel (Kv3.4), and one inward rectifier K+ channel (IRK3) was drastically inhibited by photoactivation of rose bengal, a classical generator of reactive oxygen species. Other channel types (such as Shaker K+ channel Kv1.2, Shab channels Kv2.1 and Kv2.2, Shal channel Kv4.1, inward rectifiers IRK1 and ROMK1, and hIsK) were completely resistant to this treatment. On the other hand tert-butyl hydroperoxide, another generator of reactive oxygen species, removed the fast inactivation processes of Kv1.4 and Kv3.4 but did not alter other channels. Xanthine/xanthine oxidase system had no effect on all channels studied. Thus, we show that different types of K+ channels are differently modified by reactive oxygen species, an observation that might be of importance in disease states.  相似文献   

5.
Potassium (K+) channels are involved in the modulation and fine tuning of the excitable properties of neurons and glia in the nervous system. In the present report, in situ hybridization histochemistry was used to determine the regional and cellular distribution patterns in the adult rat brain of four mRNAs encoding subunits of voltage-gated K+ channels. These are Kv1.1, Kv1.6, K13 and IK8. All K+ channels examined showed distinct yet overlapping expression patterns. Expression of Kv1.1 mRNA was high in cells of certain motor-related structures of the brainstem. Kv1.6 mRNA expression was observed in cerebellar Purkinje cells and in various olfactory and amygdaloid structures. K13 was the only mRNA expressed in both neuronal and non-neuronal cell populations, including the cells of choroid plexus and pia. IK8 expression was observed only in the forebrain structures. In many brain regions, mRNAs for Kv1.1 and Kv1.6, both encoding K+ channel subunits belonging to the Shaker subfamily, were co-expressed, a necessary condition for heteromultimer formation.  相似文献   

6.
Chronic atrial fibrillation is associated with a shortening of the atrial action potential duration and atrial refractory period. To test the hypothesis that these changes are mediated by changes in the density of specific atrial K+ currents, we compared the density of K+ currents in left and right atrial myocytes and the density of delayed rectifier K+ channel alpha-subunit proteins (Kv1.5 and Kv2.1) in left and right atrial appendages from patients (n = 28) in normal sinus rhythm with those from patients (n = 15) in chronic atrial fibrillation (AF). Contrary to our expectations, nystatin-perforated patch recordings of whole-cell K+ currents revealed significant reductions in both the inactivating (ITO) and sustained (IKsus) outward K+ current densities in left and right atrial myocytes isolated from patients in chronic AF, relative to the ITO and IKsus densities in myocytes isolated from patients in normal sinus rhythm. Quantitative Western blot analysis revealed that although there was no change in the expression of the Kv2.1 protein, the expression of Kv1.5 protein was reduced by > 50% in both the left and the right atrial appendages of AF patients. The finding that Kv1.5 expression is reduced in parallel with the reduction in delayed rectifier K+ current density is consistent with recent suggestions that Kv1.5 underlies the major component of the delayed rectifier K+ current in human atrial myocytes, the ultrarapid delayed rectifier K+ current, IKur. The unexpected finding of reduced voltage-gated outward K+ current densities in atrial myocytes from AF patients demonstrates the need to further examine the details of the electrophysiological remodeling that occurs during AF to enable more effective and safer therapeutic strategies to be developed.  相似文献   

7.
Schwann cells (SCs) are responsible for myelination of nerve fibers in the peripheral nervous system. Voltage-dependent K+ currents, including inactivating A-type (KA), delayed-rectifier (KD), and inward-rectifier (KIR) K+ channels, constitute the main conductances found in SCs. Physiological studies have shown that KD channels may play an important role in SC proliferation and that they are downregulated in the soma as proliferation ceases and myelination proceeds. Recent studies have begun to address the molecular identity of K+ channels in SCs. Here, we show that a large repertoire of K+ channel alpha subunits of the Shaker (Kv1.1, Kv1.2, Kv1.4, and Kv1.5), Shab (Kv2.1), and Shaw (Kv3.1b and Kv3.2) families is expressed in mouse SCs and sciatic nerve. We characterized heteromultimeric channel complexes that consist of either Kv1.5 and Kv1.2 or Kv1.5 and Kv1.4. In postnatal day 4 (P4) sciatic nerve, most of the Kv1.2 channel subunits are involved in heteromultimeric association with Kv1.5. Despite the presence of Kv1. 1 and Kv1.2 alpha subunits, the K+ currents were unaffected by dendrotoxin I (DTX), suggesting that DTX-sensitive channel complexes do not account substantially for SC KD currents. SC proliferation was found to be potently blocked by quinidine or 4-aminopyridine but not by DTX. Consistent with previous physiological studies, our data show that there is a marked downregulation of all KD channel alpha subunits from P1-P4 to P40 in the sciatic nerve. Our results suggest that KD currents are accounted for by a complex combinatorial activity of distinct K+ channel complexes and confirm that KD channels are involved in SC proliferation.  相似文献   

8.
In the nervous system, Src family tyrosine kinases are thought to be involved in cell growth, migration, differentiation, apoptosis, as well as in myelination and synaptic plasticity. Emerging evidence indicates that K+ channels are crucial targets of Src tyrosine kinases. However, most of the data accumulated so far refer to heterologous expression, and native K+-channel substrates of Src or Fyn in neurons and glia remain to be elucidated. The present study shows that a Src family tyrosine kinase constitutively activates delayed-rectifier K+ channels (IK) in mouse Schwann cells (SCs). IK currents are markedly downregulated upon exposure of cells to the tyrosine kinase inhibitors herbimycin A and genistein, while a potent upregulation of IK is observed when recombinant Fyn kinase is introduced through the patch pipette. The Kv1.5 and Kv2.1 K+-channel alpha subunits are constitutively tyrosine phosphorylated and physically associate with Fyn both in cultured SCs and in the sciatic nerve in vivo. Kv2.1- channel subunits are found to interact with the Fyn SH2 domain. Inhibition of Schwann cell proliferation by herbimycin A and by K+-channel blockers suggests that the functional linkage between Src tyrosine kinases and IK channels could be important for Schwann cell proliferation and the onset of myelination.  相似文献   

9.
The omega-3 polyunsaturated fatty acid docosahexaenoic acid is highly enriched in neuronal membranes, and several studies suggest that DHA is critical for neuronal development. We have investigated the effects of exogenously applied DHA on voltage-gated K+ channels using patch-clamp techniques. DHA produced a concentration-dependent inhibition of the sustained outward current in isolated neocortical neurons. This blocking action was examined in more detail with two cloned neuronal K+ channels (Kv1.2 and Kv3.1a) expressed in mammalian fibroblasts. DHA produced a potent inhibition of depolarization-activated K+ currents from cells expressing these channels (Kd values, 1.8 +/- 0.1 muM and 690 +/- 60 nM, for Kv1.2 and Kv3.1a, respectively, at +40 mV). The DHA block of both channel types was rapidly reversed (approximately 2 sec) by bovine serum albumin, which binds the fatty acid. Micromolar concentrations of extracellular Zn2+ non-competitively antagonized DHA inhibition of Kv1.2 channels, whereas there was little effect on DHA block of Kv3.1a channels. Experiments with membrane patches from Kv1.2 transfected cells demonstrated that the DHA block occurred from the outside, suggesting that the fatty acid interacts directly with an external domain of the ion channel. DHA may serve as a local messenger molecule that selectively modulates the activity of certain voltage-gated K+ channels in a Zn2(+)-dependent fashion.  相似文献   

10.
Mamba snake dendrotoxins have been used extensively in biochemical and physiological studies of K+ channels of the brain. Their known targets of inhibition have been limited to the family of voltage-gated K+ channels. We report the isolation of a dendrotoxin inhibitor of ROMK1, a channel belonging to the inward rectifier family of K+ channels. The inhibitory activity, fractionated to purity with FPLC and HPLC, is identical to a previously identified delta-dendrotoxin. To verify that delta-dendrotoxin blocks ROMK1 channels, a cDNA encoding the toxin was synthesized and recombinant toxin expressed in Escherichia coli. Electrophysiological recordings reveal that recombinant delta-dendrotoxin has a half-maximal inhibition constant (Kd) of 150 nM when applied to ROMK1 channels expressed in Xenopus laevis oocytes. That the delta-dendrotoxin binding site exists on separate K+ channel classes is shown by its high affinity for two of the voltage-gated family of channels, Kv1.1 (Kd < 0.1 nM) and Kv1.6 (Kd = 23 nM). Single amino acid substitutions in ROMK1 indicate that delta-dendrotoxin binds to the pore region of ROMK1 even though it does not completely block conduction through the pore. These results suggest that dendrotoxins inhibit K+ channels by recognizing the structurally conserved pore region of these channels.  相似文献   

11.
Sea anemone venom is known to contain toxins that are active on voltage-sensitive Na+ channels, as well as on delayed rectifier K+ channels belonging to the Kv1 family. This report describes the properties of a new set of peptides from Anemonia sulcata that act as blockers of a specific member of the Kv3 potassium channel family. These toxins, blood depressing substance (BDS)-I and BDS-II, are 43 amino acids long and differ at only two positions. They share no sequence homologies with other K+ channel toxins from sea anemones, such as AsKS, AsKC, ShK, or BgK. In COS-transfected cells, the Kv3.4 current was inhibited in a reversible manner by BDS-I, with an IC50 value of 47 nM. This inhibition is specific because BDS-I failed to block other K+ channels in the Kv1, Kv2, Kv3, and Kv4 subfamilies. Inward rectifier K+ channels are also insensitive to BDS-I. BDS-I and BDS-II share the same binding site on brain synaptic membranes, with K0.5 values of 12 and 19 nM, respectively. We observed that BDS-I and BDS-II have some sequence homologies with other sea anemone Na+ channels toxins, such as AsI, AsII, and AxI. However, they had a weak effect on tetrodotoxin-sensitive Na+ channels in neuroblastoma cells and no effect on Na+ channels in cardiac and skeletal muscle cells. BDS-I and BDS-II are the first specific blockers identified so far for the rapidly inactivating Kv3.4 channel.  相似文献   

12.
Postnatal development and myocardial hypertrophy are associated with alterations in cardiac voltage-gated K+ channels. To investigate mechanisms underlying this K+ channel remodeling, expression of Kv4.2 and Kv1.4 K+ channel alpha-subunits was examined in cultured newborn rat ventricular myocytes by Western blot analysis using polyclonal antibodies against each of the subunits. At day 5 of cell culture, Kv1.4 protein was expressed at higher level than Kv4.2; as the age of culture progressed, Kv1.4 was significantly diminished while Kv4.2 increased with time in culture and became the predominant K+ channel protein. Such K+ channel isoform switch from Kv1.4 to Kv4.2 resembles that of the development in vivo. A 72-h treatment with exogenous triiodothyronine (T3, 0.1 microM) to cultured neonatal myocytes enhanced the expression of Kv4.2 by 73% and decreased the Kv1.4 expression by 22%. The effects of T3 were associated with an increase in the protein-to-DNA ratio indicating myocyte hypertrophy. On the other hand, a 72-h treatment with cardiac non-myocyte cell (NMC)-conditioned growth medium (NCGM) or phenylephrine (20 microM) induced similar cell hypertrophy, but in sharp contrast to T3, both markedly suppressed the Kv4.2 channel protein level. In addition, the trophic and the Kv4.2-downregulating effects of NCGM could be mimicked by exogenous endothelin-1 (0.1 microM), a paracrine factor secreted from cardiac NMCs. Our observations for the first time suggest that cardiac Kv4.2 and Kv1.4 K+ channel alpha-subunits are differentially regulated by a variety of myocardial hypertrophic factors. That T3 accelerated the developmental K+ channel isoform switch from Kv1.4 to Kv4.2 in vitro indicates the critical importance of thyroid hormone in postnatal K+ channel remodeling. Cardiac NMCs and alpha-adrenoceptor activation may contribute to the reduced outward K+ channel density in hypertrophied cardiomyocytes.  相似文献   

13.
beta-Dendrotoxin (beta-DTX), a polypeptide component of Eastern Green Mamba snake venom, inhibits a slow voltage-activated 86Rb efflux from synaptosomes, suggesting that beta-DTX inhibits K+ channels. The effects of beta-DTX on the K+ currents in primary cultured and subcultured (passages 8-12) rat tail artery vascular smooth muscle cells (VSMCs) were studied using the whole-cell patch-clamp technique. A delayed rectifier K+ current was observed in both types of cells. The current, which was relatively insensitive to tetraethylammonium, was activated at -40 to -30 mV and showed almost no inactivation. beta-DTX (1-1000 nM) decreased the outward K+ current. The effect was concentration dependent and reversible by washout but did not depend on the frequency of stimulation (use dependence) or the membrane potential. beta-DTX was more effective in primary cultured cells than in subcultured cells. K+ channels in primary cultured cells were maximally (45%) inhibited by 1 microM beta-DTX compared with 35% inhibition in subcultured cells. The concentration producing half-maximal inhibition was 5.1 x 10(-8) M for primary cells and 7.1 x 10(-8) M for subcultured cells. The delayed rectifier current was not affected by alpha-DTX, a blocker of the fast-inactivating outward K+ current (IA). These results clearly demonstrate that beta-DTX is a novel antagonist of the delayed rectifier K+ current in primary and subcultured rat tail artery VSMCs.  相似文献   

14.
Possible heteromultimer formation between Kv- and Kir-type K+ channels was investigated, in connection with the known functional diversity of K+ channels in vivo. Voltage-clamp experiments were performed on Xenopus oocytes, either injected with concatenated Kir2.1-Kv1.1 mRNA, or co-injected with Kv1.1 and Kir2.1 mRNA. K+ currents could be approximated by the algebraic sum of the 2 K+ current types alone. The tandem construct did not show functional expression, although it could be detected by Western blotting. We conclude that Kv1.1 and Kir2.1 alpha-subunit proteins fail to assemble and do not contribute functional diversity to K+ channels.  相似文献   

15.
The molecular mechanisms underlying the clustering and localization of K+ channels in specific microdomains on the neuronal surface are largely unknown. The Shaker subclass of voltage-gated K+ channel alpha-subunits interact through their cytoplasmic C-terminus with a family of membrane-associated putative guanylate kinases, including PSD-95 and SAP97. We show here that heterologous coexpression of either sap97 or PSD-95 with various Shaker-type subunits results in the coclustering of these proteins with the K+ channels. Mutation of the C-terminal sequence (-ETDV) of the Shaker subunit Kv1.4 abolishes its binding to, and prevents its clustering with, SAP97 and PSD-95. Whereas PSD-95 induces plaque-like clusters of K+ channels at the cell surface; however, SAP97 coexpression results in the formation of large round intracellular aggregates into which both SAP97 and the K+ channel proteins are colocalized. The efficiency of surface clustering by PSD-95 varies with different Shaker subunits: striking Kv1.4 clustering occurs in > 60% of cotransfected cells, whereas Kv1.1 and Kv1.2 form convincing clusters with PSD-95 only in approximately 10% of cells.  相似文献   

16.
The class III antiarrhythmic drug clofilium is known to block diverse delayed rectifier K+ channels at micromolar concentrations. In the present study we investigated the potency of clofilium and its tertiary analog LY97241 to inhibit K+ channels, encoded by the human ether-a-go-go related gene (HERG). Clofilium blocked HERG channels in a voltage-dependent fashion with an IC50 of 250 nM and 150 nM at 0 and +40 mV, respectively. LY97241 was almost 10-fold more potent (IC50 of 19 nM at +40 mV). Other cloned K+ channels which are also expressed in cardiac tissue, Kv1.1, Kv1.2, Kv1.4, Kv1.5, Kv4.2, Kir2.1, or I(Ks), were not affected by 100-fold higher concentrations. Block of HERG channels by LY97241 was voltage dependent and the rate of HERG inactivation was increased by LY97241. A rise of [K+]0 decreased both, rate of HERG inactivation and LY97241 affinity. The HERG S631A and S620T mutant channels which have a strongly reduced degree of inactivation were 7-fold and 33-fold less sensitive to LY97241 blockade, indicating that LY97241 binding is affected by HERG channel inactivation. In summary, the antiarrhythmic action of clofilium and its analog LY97241 appears to be caused by their potent, but distinct ability for blocking HERG channels.  相似文献   

17.
K+ channel modulation in arterial smooth muscle   总被引:1,自引:0,他引:1  
Potassium channels play an essential role in the membrane potential of arterial smooth muscle, and also in regulating contractile tone. Four types of K+ channel have been described in vascular smooth muscle: Voltage-activated K+ channels (Kv) are encoded by the Kv gene family, Ca(2+)-activated K+ channels (BKCa) are encoded by the slo gene, inward rectifiers (KIR) by Kir2.0, and ATP-sensitive K+ channels (KATP) by Kir6.0 and sulphonylurea receptor genes. In smooth muscle, the channel subunit genes reported to be expressed are: Kv1.0, Kv1.2, Kv1.4-1.6, Kv2.1, Kv9.3, Kv beta 1-beta 4, slo alpha and beta, Kir2.1, Kir6.2, and SUR1 and SUR2. Arterial K+ channels are modulated by physiological vasodilators, which increase K+ channel activity, and vasoconstrictors, which decrease it. Several vasodilators acting at receptors linked to cAMP-dependent protein kinase activate KATP channels. These include adenosine, calcitonin gene-related peptide, and beta-adrenoceptor agonists. beta-adrenoceptors can also activate BKCa and Kv channels. Several vasoconstrictors that activate protein kinase C inhibit KATP channels, and inhibition of BKCa and Kv channels through PKC has also been described. Activators of cGMP-dependent protein kinase, in particular NO, activate BKCa channels, and possibly KATP channels. Hypoxia leads to activation of KATP channels, and activation of BKCa channels has also been reported. Hypoxic pulmonary vasoconstriction involves inhibition of Kv channels. Vasodilation to increased external K+ involves KIR channels. Endothelium-derived hyperpolarizing factor activates K+ channels that are not yet clearly defined. Such K+ channel modulations, through their effects on membrane potential and contractile tone, make important contributions to the regulation of blood flow.  相似文献   

18.
Voltage-gated potassium channels constitute the largest group of heteromeric ion channels discovered to date. Over 20 genes have been isolated, encoding different channel subunit proteins which form functional tetrameric K+ channels. We have analyzed the subcellular localization of subunit Kv3.1b, a member of the Kv3 (Shaw-like) subfamily, in rat brain at the light and electron microscopic level, using immunocytochemical detection. Detailed localization was carried out in specific neurons of the neocortex, hippocampus and cerebellum. The identity of Kv3.1b-positive neurons was established using double labeling with markers for specific neuronal populations. In the neocortex, the Kv3.1b subunit was expressed in most parvalbumin-containing bipolar, basket or chandelier cells, and in some bipolar or double bouquet neurons containing calbindin. In the hippocampus, Kv3.1b was expressed in many parvalbumin-containing basket cells, as well as in calbindin-positive neurons in the stratum oriens, and in a small number of interneurons that did not stain for either parvalbumin or calbindin. Kv3.1b protein was not present in pyramidal cells in the neocortex and the hippocampus, but these cells were outlined by labeled presynaptic terminals from interneuron axons that surround the postsynaptic cell. In the cerebellar cortex, granule cells were the only population expressing the channel protein. Careful examination of individual granule cells revealed a non-uniform distribution of Kv3.1 staining on the somata: circular bands of labeling were present in the vicinity of the axon hillock. In cortical and hippocampal interneurons, as well as in cerebellar granule cells, the Kv3.1b subunit was present in somatic and unmyelinated axonal membranes and adjacent cytoplasm, as well as in the most proximal portion of dendritic processes, but not throughout most of the dendrite. Labeling was also seen in the terminals of labeled axons, but not at a higher concentration than in other parts of the axon. The distribution in the cells analyzed supports a role in action potential transmission by regulating action potential duration.  相似文献   

19.
We have investigated aspects of ion selectivity in K+ channels by functional expression of wild-type and mutant heteromultimeric G protein-coupled inward-rectifier K+ (GIRK) channels in Xenopus oocytes. Within the K+ channel pore (P) region signature sequence, a large number of point mutations in GIRK1 and GIRK4 subunits have been made at a key tyrosine residue--the "signature" tyrosine of the GYG. Studies of mutant GIRK1/GIRK4 heteromultimers reveal that the GIRK1 and GIRK4 subunits contribute asymmetrically to K+ selectivity. The signature tyrosine of GIRK1 can be mutated to many different residues while retaining selectivity; in contrast, the analogous position in GIRK4 must be tyrosine for maximum selectivity. Other residues of the P region also contribute to selectivity, and studies with GIRK1/GIRK4 chimeras reveal that an intact, heteromultimeric P region is necessary and sufficient for optimal K+ selectivity. We propose that the GIRK1 and GIRK4 P regions play roles similar to the two P regions of an emerging family of K+ channels whose subunits each have two P regions connected in tandem. We find different consequences between similar mutations in inward-rectifier and voltage-gated K+ channels, which suggests that the pore structures and selectivity mechanisms in the two classes of channel may not be identical. We confirm that GIRK4 subunits alone can form functional channels in oocytes, but we find that these channels are measurably permeable to Na2+ and Ca2+.  相似文献   

20.
Previously, we showed that the N-terminal recognition domain (T1) of Kv1.3 was not required for assembly of functional channels [Tu et al. (1996) J. Biol. Chem. 271, 18904-18911]. Moreover, specific Kv1.3 peptide fragments including regions of the central core are able to inhibit expression of current produced from a channel lacking the T1 domain, Kv1.3(T1-). To elucidate the mechanism whereby Kv1.3 peptide fragments suppress Kv1.3(T1-) current, we have studied the ability of peptide fragments containing the transmembrane segments S1, S1-S2, or S1-S2-S3 to physically associate with the Kv1.3(T1-) polypeptide subunit in vitro in microsomal membranes. Using c-myc (9E10) epitope-labeled peptide fragments and anti-myc antibody as well as antisera to the Kv1.3 C-terminus, we now demonstrate specific association of these peptide fragments with Kv1.3(T1-). Association of peptide fragments with Kv1.3(T1-) was correlated with integration of both proteins into the membrane. Furthermore, the relative strength and kinetics of this association directly correlated with the ability of fragments to suppress Kv1.3(T1-) current. The rate-limiting step in the sequential synthesis, integration, and formation of a complex was the association of integrated polypeptides within the plane of the lipid bilayer. These results strongly suggest that the physical association of transmembrane segments provides the basis for suppression of K+ channel function by K+ channel peptide fragments in vivo. Moreover, the S1-S2-S3 peptide fragment potently suppressed full-length Kv1.3, thus implicating a role for the S1-S2-S3 region of Kv1.3 in the assembly of the Kv1.3 channel. We refer to these putative association sites as IMA (intramembrane association) sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号