首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
黄晓虹  唐翠蓉  杨刚 《热加工工艺》2014,(20):221-222,226
轴流压缩机在运行过程中叶片发生失效断裂,通过断口显微观察、能谱分析和力学性能测试对叶片断裂原因进行了研究。结果表明:叶片断裂面中存在着一个组织疏松的孔洞缺陷,该孔洞成为裂纹源,裂纹源在交变应力的作用下萌生裂纹并不断扩展,最终导致叶片出现疲劳失效断裂。  相似文献   

2.
某氮压机叶轮上的叶片发生早期失效破裂,从叶片的化学成分、显微组织、力学性能和断口的宏观、微观形貌等方面分析其失效原因。结果表明,叶片材料为17-4PH不锈钢(对应中国牌号05Cr17Ni4Cu4Nb)。叶片断口上有明显的疲劳特征,表明断裂属于疲劳断裂。叶片材料的化学成分、组织及性能满足标准要求。叶片的振动是造成断裂的主要原因。  相似文献   

3.
某型发动机在使用过程中一片钛合金转子叶片在叶根部发生断裂故障.针对该故障叶片,开展了外观形貌观察、断口宏微观观察、金相组织检查、化学成分及硬度检测等研究工作,结合发动机工作特点,确定了叶片断裂性质和原因.结果表明:压气机转子叶片断裂性质为高周疲劳断裂,疲劳裂纹的形成与叶片局部应力状态有关,而微动磨损促进了疲劳裂纹的萌生.  相似文献   

4.
对某型号失效的烟气轮机动叶片进行了断口和裂纹源区形貌、金相组织观察及化学成分分析,结果表明:高温硫腐蚀和局部应力偏高是导致动叶片裂纹萌生的主要原因,使用过程中的腐蚀疲劳最终导致其断裂失效.   相似文献   

5.
某航空发动机第三级涡轮叶片失效分析   总被引:3,自引:0,他引:3  
本文对某型号航空发动机GH4033第三级涡轮叶片榫头裂纹及断裂失效进行了分析,确定了失效模式为两类,第一类为蠕变疲劳裂纹,第二类为起始应力较大的高低周复合疲劳断裂.研究发现GH4033合金屈服强度偏低、晶界强化能力不足是叶片发生蠕变疲劳开裂的主要原因.而叶片的高低周复合疲劳断裂则主要与个别相邻叶片的叶冠间隙偏大引发的高振动弯曲应力及R处加工刀痕引发的应力集中有关.最后提出了预防叶片发生该类失效的措施.  相似文献   

6.
热电厂汽轮机叶片断裂原因分析   总被引:2,自引:0,他引:2  
    对某石化公司热电厂8号汽轮机的断裂叶片进行了宏观形貌、化学成分、金相组织以及扫描电镜形貌和元素成分能谱分析.结果表明,该叶片的断裂属于腐蚀疲劳失效;叶片上的点蚀坑是裂纹源;引起叶片发生点腐蚀的原因是蒸汽中存在的氯、硫等介质.  相似文献   

7.
对断裂失效的风叶片紧固用螺栓件进行化学成分分析、宏观分析、金相分析、硬度测试和断口分析,结果表明:3根螺栓的断裂形式均为疲劳断裂,螺纹根部的应力集中和条状硫化物造成疲劳强度的下降是造成1#螺栓疲劳断裂的主要原因;1#螺栓的疲劳扩展使得2#、3#螺栓的工作应力升高,在螺纹根部产生疲劳源,而疲劳裂纹在条状硫化物的加速作用下扩展发生疲劳断裂。  相似文献   

8.
重型汽车发动机曲轴断裂分析   总被引:6,自引:1,他引:5  
某重型汽车在正常行驶过程中,发动机曲轴突然发生断裂。对失效曲轴进行硬度测试、金相组织检查及断口宏微观观察等综合分析,结果表明:该曲轴断裂性质为弯曲-扭转疲劳断裂,其断口明显分为3个区域,即疲劳源区、扩展区和瞬断区;曲轴表面硬度比规定硬度值低,问时,材料表层和内部存在较多弥散分布的气孔及Al2O3、MnS等氧化物和硫化物夹杂,在弯矩和扭矩的共同作用下,疲劳裂纹从曲轴轴径油孔下方过渡圆角处等应力集中区域开始萌生,并沿与轴径约呈45°的方向扩展,最终导致曲轴断裂失效。  相似文献   

9.
烟气轮机动叶片断裂原因分析   总被引:4,自引:0,他引:4  
本文分析了某烟气轮机动叶片失效原因。通过使用金相、扫描电镜等手段,对叶片进行裂纹、断口、组织及成分分析。结果表明,该烟气轮机动叶片的断裂性质为疲劳断裂,断裂叶片榫头第三齿(即断口部位)处的接触不均匀造成的严重磨损、接触应力明显增大以及榫齿接触表面存在一定程度的腐蚀损伤是造成叶片榫头发生疲劳开裂的主要原因;断口表面腐蚀产物包含烟气中特有的杂质元素,如Al、Si、Ca、K、S、O、Na等元素。研究发现,晶界碳化物呈现链状分布,已经发生了晶界弱化现象。叶片裂纹源表面的亚表面处存在的夹杂物和合金的晶界弱化也促进了叶片的开裂。研究结果对于叶片的故障分析及预防具有重要的意义。  相似文献   

10.
《铸造技术》2015,(8):2034-2038
针对某透平压缩机叶片进气口端产生断口和裂纹等失效问题,通过断口宏观和显微形貌分析、失效叶片化学成分和力学性能分析及有限元分析,对叶片裂纹形成和扩展机理进行研究。结果表明,叶片进气口端断口是由于杂质冲击导致,而叶片根部的裂纹是由于腐蚀引起材料表面产生微观缺陷,最终叶片在反复扭转力的作用下产生疲劳断裂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号