首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The static x-ray imager at the National Ignition Facility is a pinhole camera using a CCD detector to obtain images of Hohlraum wall x-ray drive illumination patterns seen through the laser entrance hole (LEH). Carefully chosen filters, combined with the CCD response, allow recording images in the x-ray range of 3-5 keV with 60?μm spatial resolution. The routines used to obtain the apparent size of the backlit LEH and the location and intensity of beam spots are discussed and compared to predictions. A new soft x-ray channel centered at 870 eV (near the x-ray peak of a 300 eV temperature ignition Hohlraum) is discussed.  相似文献   

2.
We are attempting to measure the transmission of iron on Z at plasma temperatures and densities relevant to the solar radiation and convection zone boundary. The opacity data published by us to date has been taken at an electron density about a factor of 10 below the 9×10(22)/cm(3) electron density of this boundary. We present results of two-dimensional (2D) simulations of the heating and expansion of an opacity sample driven by the dynamic Hohlraum radiation source on Z. The aim of the simulations is to design foil samples that provide opacity data at increased density. The inputs or source terms for the simulations are spatially and temporally varying radiation temperatures with a Lambertian angular distribution. These temperature profiles were inferred on Z with on-axis time-resolved pinhole cameras, x-ray diodes, and bolometers. A typical sample is 0.3?μm of magnesium and 0.078?μm of iron sandwiched between 10?μm layers of plastic. The 2D LASNEX simulations indicate that to increase the density of the sample one should increase the thickness of the plastic backing.  相似文献   

3.
An in-chamber, mini x-ray imaging instrument employs a pinhole and a logarithmic spiral crystal has been developed for obtaining K-shell line images of the imploding aluminum wire array on the "Yang" accelerator. The logarithmic spiral crystal acts as a monochromator and a non-dispersive mirror that reflects the pinhole image to a x-ray film detector with a very narrow photon energy bandwidth (<1 eV, mainly determined by the width of rocking curve of the crystal). Two imaging configurations with the use of Quartz (10 ?10) crystal and Mica (002) crystal are designed, respectively, to image the Al Ly(α2) line (1727.7 eV) emission and Al He(α) intercombination line (1588.3 eV) emission. The primary experimental data corresponding to these two configurations are presented and discussed.  相似文献   

4.
Ultrafast, two-dimensional x-ray imaging is an important diagnostics for the inertial fusion energy research, especially in investigating implosion dynamics at the final stage of the fuel compression. Although x-ray radiography was applied to observing the implosion dynamics, intense x-rays emitted from the high temperature and dense fuel core itself are often superimposed on the radiograph. This problem can be solved by coupling the x-ray radiography with monochromatic x-ray imaging technique. In the experiment, 2.8 or 5.2 keV backlight x-rays emitted from laser-irradiated polyvinyl chloride or vanadium foils were selectively imaged by spherically bent quartz crystals with discriminating the out-of-band emission from the fuel core. This x-ray radiography system achieved 24?μm and 100 ps of spatial and temporal resolutions, respectively.  相似文献   

5.
Numerical modeling of the neutron imaging system for the National Ignition Facility (NIF), forward from calculated target neutron emission to a camera image, will guide both the reduction of data and the future development of the system. Located 28 m from target chamber center, the system can produce two images at different neutron energies by gating on neutron arrival time. The brighter image, using neutrons near 14 MeV, reflects the size and symmetry of the implosion "hot spot." A second image in scattered neutrons, 10-12 MeV, reflects the size and symmetry of colder, denser fuel, but with only ~1%-7% of the neutrons. A misalignment of the pinhole assembly up to ±175?μm is covered by a set of 37 subapertures with different pointings. The model includes the variability of the pinhole point spread function across the field of view. Omega experiments provided absolute calibration, scintillator spatial broadening, and the level of residual light in the down-scattered image from the primary neutrons. Application of the model to light decay measurements of EJ399, BC422, BCF99-55, Xylene, DPAC-30, and Liquid A suggests that DPAC-30 and Liquid A would be preferred over the BCF99-55 scintillator chosen for the first NIF system, if they could be fabricated into detectors with sufficient resolution.  相似文献   

6.
Two-dimensional monochromatic images of fast-electron stimulated Ar?Kα and He-α x-ray self-emission have recorded a time-integrated map of the extent of Ar(≈6+) and Ar(16+) ions, respectively, within a high density (10(20)?cm(-3) atomic density) Ar plasma. This plasma was produced by irradiating a 2 mm wide clustering Ar gas jet with an ultrahigh intensity (10(19)?W/cm(2), 50 TW) Ti:sapphire laser operating at 800 nm. Spherically bent quartz crystals in the 200 (for Kα) and 201 (for He-α) planes were used as near-normal incidence reflective x-ray optics. We see that a large (830?μm long) region of plasma emits Kα primarily along the laser axis, while the He-α emission is confined to smaller hot spot (230?μm long) region that likely corresponds to the focal volume of the f/8 laser beam. X-ray spectra from a Bragg spectrometer operating in the von Hamos geometry indicate that the centroids of the Kα and He-α emission regions are separated by approximately 330?μm along the laser axis.  相似文献   

7.
A novel diagnostic design seeks to enhance the capability of multienergy soft x-ray (SXR) detection by using an image intensifier to amplify the signals from a larger set of filtered x-ray profiles. The increased number of profiles and simplified detection system provides a compact diagnostic device for measuring T(e) in addition to contributions from density and impurities. A single-energy prototype system has been implemented on NSTX, comprised of a filtered x-ray pinhole camera, which converts the x-rays to visible light using a CsI:Tl phosphor. SXR profiles have been measured in high performance plasmas at frame rates of up to 10 kHz, and comparisons to the toroidally displaced tangential multi-energy SXR have been made.  相似文献   

8.
Charge-injection devices (CIDs) are being used to image x rays in laser-fusion experiments on the University of Rochester's OMEGA Laser System. The CID cameras are routinely used up to the maximum neutron yields generated (~10(14)?DT). The detectors are deployed in x-ray pinhole cameras and Kirkpatrick-Baez microscopes. The neutron fluences ranged from ~10(7) to ~10(9)?neutrons/cm(2) and useful x-ray images were obtained even at the highest fluences. It is intended to use CID cameras at the National Ignition Facility (NIF) as a supporting means of recording x-ray images. The results of this work predict that x-ray images should be obtainable on the NIF at yields up to ~10(15), depending on distance and shielding.  相似文献   

9.
A pinhole orifice with a known conductance can be used as a secondary flow standard. Commercially available laser-drilled pinhole orifices with diameters ranging from 1.0 μm to 50 μm can have molecular-flow conductances ranging from about 0.1 μL/s to 200 μL/s for N2 at 23 °C. Gas flows of 10−11–10−6 mol/s can easily be produced by applying an upstream pressure in the range of 1–105 Pa. Accurate measurements of the orifice conductance as a function of pressure are required to use the pinhole orifice as a basis of a flowmeter. We use a constant-pressure flowmeter to make accurate measurements of the conductance of a 20 μm orifice as a function of pressure for gas flows of Ar and N2 into vacuum. We present results of these conductance measurements for an orifice with a nominal diameter of 20 μm. The N2 conductance of this orifice ranged from 30 μL/s to 60 μL/s over the range of pressures investigated, and was measured with an uncertainty of better than 0.2% (k = 2) for upstream pressures greater than 10 Pa.  相似文献   

10.
An x-ray pinhole camera and a monochromatic K(α) imager are used to measure the interactions of intense femtosecond laser pulses with Cu foil targets. The two diagnostics give different features in the spot size and the laser energy scaling, which are resulted from different physical processes. Under our experimental conditions, the K(α) emission is mainly excited by the fast electrons transporting inside the cold bulk target. In contrast, the x-ray pinhole signals are dominated by the broadband thermal x-ray emission from the hot plasma at the front target surface.  相似文献   

11.
Quantitative investigation of micrometer and submicrometer gaps between joining metal surfaces is applied to conical plug-socket connections in dental titanium implants. Microgaps of widths well beyond the resolving power of industrial x-ray systems are imaged by synchrotron phase contrast radiography. Furthermore, by using an analytical model for the relatively simple sample geometry and applying it to numerical forward simulations of the optical Fresnel propagation, we show that quantitative measurements of the microgap width down to 0.1?μm are possible. Image data recorded at the BAMline (BESSY-II light source, Germany) are presented, with the resolving power of the imaging system being 4?μm in absorption mode and ~14?μm in phase contrast mode (z(2)=0.74?m). Thus, phase contrast radiography, combined with numerical forward simulations, is capable of measuring the widths of gaps that are two orders of magnitude thinner than the conventional detection limit.  相似文献   

12.
An industrial x-ray inspection system has recently established by our group to examine large and dense objects available in industry. It consists of an industrial x-ray generator having a tube voltage of 450?kV and a focal spot size of 1?mm, a flat-panel detector having a pixel size of 200?µm and a pixel dimension of 2048?×?2048, and a mechanical support for object’s installation. For improving the image characteristics of the system, an effective blind deblurring method based on compressed-sensing scheme is reported. Blind deblurring is the image restoration by estimating the original image and the degradation mechanism using partial information on both. Compressed-sensing is a relatively new mathematical theory for solving the inverse problems. Systematic measurements were performed and the image characteristics of the restored images were quantitatively evaluated using several image-quality indicators. The results demonstrate that the deblurring method is effective for industrial x-ray inspection systems.  相似文献   

13.
We present an instrument dedicated to 3D scanning x-ray microscopy, allowing a sample to be precisely scanned through a beam while the angle of x-ray incidence can be changed. The position of the sample is controlled with respect to the beam-defining optics by laser interferometry. The instrument achieves a position stability better than 10 nm standard deviation. The instrument performance is assessed using scanning x-ray diffraction microscopy and we demonstrate a resolution of 18 nm in 2D imaging of a lithographic test pattern while the beam was defined by a pinhole of 3 μm in diameter. In 3D on a test object of copper interconnects of a microprocessor, a resolution of 53 nm is achieved.  相似文献   

14.
High-energy x-rays, >10?keV, can be efficiently produced from ultrafast laser target interactions with many applications to dense target materials in inertial confinement fusion and high-energy density physics. These same x-rays can also be applied to measurements of low-density materials inside high-density Hohlraum environments. In the experiments presented, high-energy x-ray images of laser-shocked polystyrene are produced through phase contrast imaging. The plastic targets are nominally transparent to traditional x-ray absorption but show detailed features in regions of high density gradients due to refractive effects often called phase contrast imaging. The 200 TW Trident laser is used both to produce the x-ray source and to shock the polystyrene target. X-rays at 17 keV produced from 2 ps, 100 J laser interactions with a 12?μm molybdenum wire are used to produce a small source size, required for optimizing refractive effects. Shocks are driven in the 1 mm thick polystyrene target using 2 ns, 250 J, 532 nm laser drive with phase plates. X-ray images of shocks compare well to one-dimensional hydro calculations.  相似文献   

15.
从几何学出发,研究了有限大小物经过有限尺寸小孔以后的成像规律。得到结论如下:对有限大小的物点和有限尺寸的小孔,随着物距的不同,小孔成的像会按成像规律进行放大,但是由于小孔的有限尺寸,故相比于真正意义上的小孔,该放大的像会进一步向上与向下弥散;弥散斑的大小和像距与物距的比值以及小孔尺寸有关,小孔成像并不是通常认为的严格意义上的透镜成像。  相似文献   

16.
17.
Recent upgrades to the soft x-ray (SXR) array system on the DIII-D tokamak are described. The system consists of two 32-channel arrays at one toroidal location and three toroidally distributed 12-channel arrays. The 32-channel arrays have been completely rebuilt to allow the switching of SXR filters without breaking vacuum. The 12-channel arrays have had upgrades performed to detectors, view slits, and data acquisition. Absolute extreme ultraviolet (AXUV) photodiodes are used as detectors in all arrays, allowing detection of photons ranging in energy from 2 eV to 10 keV. In the fixed-filter arrays, 127 μm Be filters are used. In the variable-filter arrays, filter wheels are used to switch between five different possible pinhole/filter combinations.  相似文献   

18.
In this work, we describe the development and testing of a three degree of freedom meso/micromanipulation system for handling micro-objects, including biological cells and microbeads. Three-axis control is obtained using stepper motors coupled to micromanipulators. The test specimen is placed on a linear X-stage, which is coupled to one stepper motor. The remaining two stepper motors are coupled to the Y and Z axes of a micromanipulator. The stepper motor-micromanipulator arrangement in the Y and Z axes has a minimum step resolution of ~0.4?μm with a total travel of 12 mm and the stepper motor-X stage arrangement has a minimum resolution of ~0.3?μm with a total travel of 10 mm. Mechanical backlash error is ~0.8?μm for ~750?μm of travel. A MEMS microgripper from Femtotools? acts as an end-effector in the shaft end of the micromanipulator. The gripping ranges of the grippers used are 0-100?μm (for FT-G100) and 0-60?μm (for FT-G60). As the gripping action is performed, the force sense circuit of FT-G100 measures the handling force. This force feedback is integrated to a commercially available three degree of freedom haptic device (Novint Falcon) allowing the user to receive tactile feedback during the microscale handling. Both mesoscale and microscale controls are important, as mesoscale control is required for the travel motion of the test object whereas microscale control is required for the gripping action. The haptic device is used to control the position of the microgripper, control the actuation of the microgripper, and provide force feedback. A LABVIEW program was developed to interlink communication and control among hardware used in the system. Micro-objects such as SF-9 cells and polystyrene beads (~45?μm) are handled and handling forces of ~50?μN were experienced.  相似文献   

19.
We have developed a single-shot intensity-measurement system using a silicon positive-intrinsic-negative (PIN) photodiode for x-ray pulses from an x-ray free electron laser. A wide dynamic range (10(3)-10(11) photons/pulse) and long distance signal transmission (>100 m) were required for this measurement system. For this purpose, we developed charge-sensitive and shaping amplifiers, which can process charge pulses with a wide dynamic range and variable durations (ns-μs) and charge levels (pC-μC). Output signals from the amplifiers were transmitted to a data acquisition system through a long cable in the form of a differential signal. The x-ray pulse intensities were calculated from the peak values of the signals by a waveform fitting procedure. This system can measure 10(3)-10(9) photons/pulse of ~10 keV x-rays by direct irradiation of a silicon PIN photodiode, and from 10(7)-10(11) photons/pulse by detecting the x-rays scattered by a diamond film using the silicon PIN photodiode. This system gives a relative accuracy of ~10(-3) with a proper gain setting of the amplifiers for each measurement. Using this system, we succeeded in detecting weak light at the developmental phase of the light source, as well as intense light during lasing of the x-ray free electron laser.  相似文献   

20.
A comprehensive optical design for a high-resolution, high-flux, wide-energy range, micro-focused beamline working in the vacuum ultraviolet and soft x-ray photon energy range is proposed. The beamline is to provide monochromatic radiation to three photoelectron microscopes: a full-field x-ray photoelectron emission microscope and two scanning instruments, one dedicated to angle resolved photoemission spectroscopy (μ-ARPES) and one for ambient pressure x-ray photoelectron spectroscopy and scanning photoelectron microscopy (AP-XPS/SPEM). Microfocusing is achieved with state of the art elliptical cylinders, obtaining a spot size of 1 μm for ARPES and 0.5 μm for AP-XPS/SPEM. A detailed ray tracing analysis quantitatively evaluates the overall beamline performances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号