首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ignition of imploding inertial confinement capsules requires, among other things, controlling the symmetry with high accuracy and fidelity. We have used gated x-ray imaging, with 10 μm and 70 ps resolution, to detect the x-ray emission from the imploded core of symmetry capsules at the National Ignition Facility. The measurements are used to characterize the time dependent symmetry and the x-ray bang time of the implosion from two orthogonal directions. These measurements were one of the primary diagnostics used to tune the parameters of the laser and Hohlraum to vary the symmetry and x-ray bang time of the implosion of cryogenically cooled ignition scale deuterium/helium filled plastic capsules. Here, we will report on the successful measurements performed with up to 1.2 MJ of laser energy in a fully integrated cryogenics gas-filled ignition-scale Hohlraum and capsule illuminated with 192 smoothed laser beams. We will describe the technique, the accuracy of the technique, and the results of the variation in symmetry with tuning parameters, and explain how that set was used to predictably tune the implosion symmetry as the laser energy, the laser cone wavelength separation, and the Hohlraum size were increased to ignition scales. We will also describe how to apply that technique to cryogenically layered tritium-hydrogen-deuterium capsules.  相似文献   

2.
Reported in this article is the generation of unique polarized x-rays in the sub-MeV region by means of the Thomson backscattering of the Nd:YAG laser photon with a wavelength of 1064 nm on the 150 MeV electron from the microtron accelerator. The maximum energy of the x-ray photons is estimated to be about 400 keV. The total energy of the backscattered x-ray pulse is measured with an imaging plate and a LYSO scintillator. The angular divergence of the x-rays is also measured by using the imaging plate. We confirm that the x-ray beam is polarized according to the laser polarization direction with the Compton scattering method. In addition, we demonstrate the imaging of the object shielded by lead with the generated x-rays.  相似文献   

3.
High resolution density diagnostics are difficult in high energy density laboratory plasmas (HEDLP) experiments due to the scarcity of probes that can penetrate above solid density plasmas. Hard x-rays are one possible probe for such dense plasmas. We study the possibility of applying an x-ray method recently developed for medical imaging, differential phase-contrast with Talbot-Lau interferometers, for the diagnostic of electron density and small-scale hydrodynamic instabilities in HEDLP experiments. The Talbot method uses micro-periodic gratings to measure the refraction and ultra-small angle scatter of x-rays through an object and is attractive for HEDLP diagnostic due to its capability to work with incoherent and polychromatic x-ray sources such as the laser driven backlighters used for HEDLP radiography. Our paper studies the potential of the Talbot method for HEDLP diagnostic, its adaptation to the HEDLP environment, and its extension of high x-ray energy using micro-periodic mirrors. The analysis is illustrated with experimental results obtained using a laboratory Talbot interferometer.  相似文献   

4.
The potential of an x-ray magnifier prepared from a pair of asymmetrically cut crystals is studied to explore high energy x-ray imaging capabilities at high intensity laser facilities. OMEGA-EP and NIF when irradiating mid and high Z targets can be a source of high-energy x-rays whose production mechanisms and use as backlighters are a subject of active research. This paper studies the properties and potential of existing asymmetric cut crystal pairs from the National Institute of Standards and Technology (NIST) built in a new enclosure for imaging x-ray sources. The technique of the x-ray magnifier has been described previously. This new approach is aimed to find a design that could be used at laser facilities by magnifying the x-ray source into a screen far away from the target chamber center, with fixed magnification defined by the crystals' lattice spacing and the asymmetry angles. The magnified image is monochromatic and the imaging wavelength is set by crystal asymmetry and incidence angles. First laboratory results are presented and discussed.  相似文献   

5.
X-ray betatron radiation is produced by oscillations of electrons in the intense focusing field of a laser-plasma accelerator. These hard x-rays show promise for use in femtosecond-scale time-resolved radiography of ultrafast processes. However, the spectral characteristics of betatron radiation have only been inferred from filter pack measurements. In order to achieve higher resolution spectral information about the betatron emission, we used an x-ray charge-coupled device to record the spectrum of betatron radiation, with a full width at half maximum resolution of 225 eV. In addition, we have recorded simultaneous electron and x-ray spectra along with x-ray images that allow for a determination of the betatron emission source size, as well as differences in the x-ray spectra as a function of the energy spectrum of accelerated electrons.  相似文献   

6.
It is important to know the saturation thickness and reflecting power of a target for accurate x-ray analysis. In the present work, the saturation thickness was determined by using photons scattered from mercury(II) oxide and lead(II) oxide targets. Also, albedo factors (albedo number, albedo energy and albedo dose) were determined experimentally. Mercury(II) oxide and lead(II) oxide were excited by 59.54 keV gamma rays emitted from a 241Am annular radioactive source with 5 Ci activity by energy dispersive x-ray fluorescence. The scattered and emitted x-rays were counted by a high-purity germanium detector with a resolution of 182 eV at 5.9 keV at a scattering angle of 168o. The saturation thickness decreased with the increasing mean atomic number. The albedo factors decreased with increasing target thickness.  相似文献   

7.
Understanding hot electron distributions generated inside Hohlraums is important to the national ignition campaign for controlling implosion symmetry and sources of preheat. While direct imaging of hot electrons is difficult, their spatial distribution and spectrum can be deduced by detecting high energy x-rays generated as they interact with target materials. We used an array of 18 pinholes with four independent filter combinations to image entire Hohlraums with a magnification of 0.87× during the Hohlraum energetics campaign on NIF. Comparing our results with Hohlraum simulations indicates that the characteristic 10-40 keV hot electrons are mainly generated from backscattered laser-plasma interactions rather than from Hohlraum hydrodynamics.  相似文献   

8.
Si and Ge are widely used as analyzing crystals for x-rays. Drastic and accurate shaping of Si or Ge gives significant advance in the x-ray field, although covalently bonded Si or Ge crystals have long been believed to be not deformable to various shapes. Recently, we developed a deformation technique for obtaining strongly and accurately shaped Si or Ge wafers of high crystal quality, and the use of the deformed wafer made it possible to produce fine-focused x-rays. In the present study, we prepared a cylindrical Ge wafer with a radius of curvature of 50 mm, and acquired fluorescent x-rays simultaneously from four elements by combining the cylindrical Ge wafer with a position-sensitive detector. The energy resolution of the x-ray fluorescence spectrum was as good as that obtained using a flat single crystal, and its gain was over 100. The demonstration of the simultaneous acquisition of high-resolution x-ray fluorescence spectra indicated various possibilities of x-ray spectrometry, such as one-shot x-ray spectroscopy and highly efficient wave-dispersive x-ray spectrometers.  相似文献   

9.
The National Ignition Facility will soon be producing x-ray flux and neutron yields higher than any produced in laser driven implosion experiments in the past. Even a non-igniting capsule will require x-ray imaging of near burning plasmas at 10(17) neutrons, requiring x-ray recording systems to work in more hostile conditions than we have encountered in past laser facilities. We will present modeling, experimental data and design concepts for x-ray imaging with electronic recording systems for this environment (ARIANE). A novel instrument, active readout in a nuclear environment, is described which uses the time-of-flight difference between the gated x-ray signal and the neutron which induces a background signal to increase the yield at which gated cameras can be used.  相似文献   

10.
High-energy x-rays, >10?keV, can be efficiently produced from ultrafast laser target interactions with many applications to dense target materials in inertial confinement fusion and high-energy density physics. These same x-rays can also be applied to measurements of low-density materials inside high-density Hohlraum environments. In the experiments presented, high-energy x-ray images of laser-shocked polystyrene are produced through phase contrast imaging. The plastic targets are nominally transparent to traditional x-ray absorption but show detailed features in regions of high density gradients due to refractive effects often called phase contrast imaging. The 200 TW Trident laser is used both to produce the x-ray source and to shock the polystyrene target. X-rays at 17 keV produced from 2 ps, 100 J laser interactions with a 12?μm molybdenum wire are used to produce a small source size, required for optimizing refractive effects. Shocks are driven in the 1 mm thick polystyrene target using 2 ns, 250 J, 532 nm laser drive with phase plates. X-ray images of shocks compare well to one-dimensional hydro calculations.  相似文献   

11.
We present details of a new bismuth germanate [Bi(4)Ge(3)O(12) (BGO)] scintillator array used to diagnose the transport and energy behavior of runaway electrons (REs) in DIII-D. BGO exhibits important properties for these compact detectors including high light yield which sufficiently excites photodiode detectors (8500 photons/MeV), high density and atomic numbers of constituent materials which maximizes sensitivity, and relative neutron blindness which minimizes complications in data interpretation. The detectors observe primarily hard x-ray radiation emitted in a forward beamed pattern by RE when they strike first wall materials or bulk ions and neutrals in the plasma, although we also address photoneutron signals. The arrangement of the array enables time resolved location of x-ray emission and associated asymmetries which help identify instabilities and confinement properties of RE. By shielding a subset of detectors with different thicknesses of lead, and with interpretative support of the code EGSNRC, we also measure RE energy, although due to the often distributed nature of RE strike points and the forward beamed character of emitted hard x-rays, we restrict interpretation as a lower bound for RE energy.  相似文献   

12.
A new imaging system for 1 MA scale wire-array Z-pinch experiments that produces up to five high-resolution x-ray images per experimental pulse has been developed. Calibrated areal density measurements of the Z-pinch plasma can be obtained from each pulse. The system substitutes five molybdenum (Mo) X pinches for the normal copper return-current conductors to provide point sources of x-rays for point-projection radiography. Each backlighting X pinch consists of four Mo wires, the x-ray burst timing of which was controlled by varying the wire diameter (mass) from 10.2 to 30 microm in the five X pinches. Typical images have a 16x8 mm2 field of view at the wire array and a magnification of about 6.5:1 on the x-ray-sensitive film. Titanium (Ti) filters in front of the films transmit continuum radiation in the spectral range of 3-5 keV. Inclusion on the Ti of a step wedge having known thickness increments of the same material as the wires enables the calibrated areal density measurements to be made of the exploding wire plasmas. Here, we used tungsten (W) step wedges with step thicknesses ranging from 0.015 to 1.1 microm to obtain accurate (+/-10%) areal density measurements of W plasmas from the spatial profile of film exposure. When imaging arrays that produce intense radiation pulses, a plastic monofilament "quencher" is placed on axis to avoid film saturation. Images have subnanosecond temporal resolution and about 7 microm spatial resolution.  相似文献   

13.
X-ray phase-contrast radiography and tomography enable to increase contrast for weakly absorbing materials. Recently, x-ray grating interferometers were developed that extend the possibility of phase-contrast imaging from highly brilliant radiation sources like third-generation synchrotron sources to non-coherent conventional x-ray tube sources. Here, we present the first installation of a three grating x-ray interferometer at a low-coherence wiggler source at the beamline W2 (HARWI II) operated by the Helmholtz-Zentrum Geesthacht at the second-generation synchrotron storage ring DORIS (DESY, Hamburg, Germany). Using this type of the wiggler insertion device with a millimeter-sized source allows monochromatic phase-contrast imaging of centimeter sized objects with high photon flux. Thus, biological and materials-science imaging applications can highly profit from this imaging modality. The specially designed grating interferometer currently works in the photon energy range from 22 to 30 keV, and the range will be increased by using adapted x-ray optical gratings. Our results of an energy-dependent visibility measurement in comparison to corresponding simulations demonstrate the performance of the new setup.  相似文献   

14.
A dedicated in-vacuum coherent x-ray diffraction microscope was installed at the 2-ID-B beamline of the Advanced Photon Source for use with 0.7-2.9 keV x-rays. The instrument can accommodate three common implementations of diffractive imaging; plane wave illumination; defocused-probe (Fresnel diffractive imaging) and scanning (ptychography) using either a pinhole, focused or defocused probe. The microscope design includes active feedback to limit motion of the optics with respect to the sample. Upper bounds on the relative optics-to-sample displacement have been measured to be 5.8 nm(v) and 4.4 nm(h) rms/h using capacitance micrometry and 27 nm/h using x-ray point projection imaging. The stability of the measurement platform and in-vacuum operation allows for long exposure times, high signal-to-noise and large dynamic range two-dimensional intensity measurements to be acquired. Finally, we illustrate the microscope's stability with a recent experimental result.  相似文献   

15.
The dual crystal spectrometer (DCS) is an approved diagnostic at the OMEGA and the OMEGA-EP laser facilities for the measurement of high energy x-rays in the 11-90 keV energy range, e.g., for verification of the x-ray spectrum of backlighter targets of point projection radiography experiments. DCS has two cylindrically bent transmission crystal channels with image plate detectors at distances behind the crystals close to the size of the respective Rowland circle diameters taking advantage of the focusing effect of the cylindrically bent geometry. DCS, with a source to crystal distance of 1.2 m, provides the required energy dispersion for simultaneous detection of x-rays in a low energy channel (11-45 keV) and a high-energy channel (19-90 keV). A scaling study is described for varied pulse length with unchanged laser conditions (energy, focusing). The study shows that the Kα line intensity is not strongly dependent on the length of the laser pulse.  相似文献   

16.
In x-ray radiography, particularly for technical and industrial applications, a scanning setup is very often favorable when compared to a direct two-dimensional image acquisition. Here, we report on an efficient scanning method for grating based x-ray phase contrast imaging with tube based sources. It uses multiple line detectors for staggered acquisition of the individual phase-stepping images. We find that the total exposure time does not exceed the time needed in an equivalent scanning setup for absorption radiography. Therefore, we conclude that it should be possible to implement the method into a scanning system without affecting the scanning speed or significant increase in cost but with the advantage of providing both the phase contrast and the absorption information at once.  相似文献   

17.
Phase-contrast or refraction-enhanced x-ray radiography can be useful for the diagnostic of low-Z high energy density plasmas, such as imploding inertial confinement fusion (ICF) pellets, due to its sensitivity to density gradients. To separate and quantify the absorption and refraction contributions to x-ray images, methods based on microperiodic optics, such as shearing interferometry, can be used. To enable applying such methods with the energetic x rays needed for ICF radiography, we investigate a new type of optics consisting of grazing incidence microperiodic mirrors. Using such mirrors, efficient phase-contrast imaging systems could be built for energies up to ~100?keV. In addition, a simple lithographic method is proposed for the production of the microperiodic x-ray mirrors based on the difference in the total reflection between a low-Z substrate and a high-Z film. Prototype mirrors fabricated with this method show promising characteristics in laboratory tests.  相似文献   

18.
We describe the anticipated performance of an x-ray microcalorimeter instrument on ITER. As part of the core imaging x-ray spectrometer, the instrument will augment the imaging crystal spectrometers by providing a survey of the concentration of heavy ion plasma impurities in the core and possibly ion temperature values from the emission lines of different elemental ions located at various radial positions.  相似文献   

19.
We have developed a single-shot intensity-measurement system using a silicon positive-intrinsic-negative (PIN) photodiode for x-ray pulses from an x-ray free electron laser. A wide dynamic range (10(3)-10(11) photons/pulse) and long distance signal transmission (>100 m) were required for this measurement system. For this purpose, we developed charge-sensitive and shaping amplifiers, which can process charge pulses with a wide dynamic range and variable durations (ns-μs) and charge levels (pC-μC). Output signals from the amplifiers were transmitted to a data acquisition system through a long cable in the form of a differential signal. The x-ray pulse intensities were calculated from the peak values of the signals by a waveform fitting procedure. This system can measure 10(3)-10(9) photons/pulse of ~10 keV x-rays by direct irradiation of a silicon PIN photodiode, and from 10(7)-10(11) photons/pulse by detecting the x-rays scattered by a diamond film using the silicon PIN photodiode. This system gives a relative accuracy of ~10(-3) with a proper gain setting of the amplifiers for each measurement. Using this system, we succeeded in detecting weak light at the developmental phase of the light source, as well as intense light during lasing of the x-ray free electron laser.  相似文献   

20.
为了解决工业无损检测x线的数字化成像问题。本文介绍了一种基于TCP/IP通信协议的X射线无损检测扫描成像系统,阐述了探测器数据接收与成像的基本原理及技术实现,进行了系统硬件和软件的设计。试验结果表明,X-SCANX射线线阵列探测器可以实现16bit高速图像数据获取。空间分辨率可达0.4mm。并取得了比较满意的x射线图像效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号