首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The ECE imaging (ECEI) diagnostic tested on the TEXTOR tokamak revealed the sawtooth reconnection physics in unprecedented detail, including the first observation of high-field-side crash and collective heat transport [H. K. Park, N. C. Luhmann, Jr., A. J. H. Donne? et al., Phys. Rev. Lett. 96, 195003 (2006)]. An improved ECEI system capable of visualizing both high- and low-field sides simultaneously with considerably better spatial coverage has been developed for the KSTAR tokamak in order to capture the full picture of core MHD dynamics. Direct 2D imaging of other MHD phenomena such as tearing modes, edge localized modes, and even Alfve?n eigenmodes is expected to be feasible. Use of ECE images of the optically thin edge region to recover 2D electron density changes during L/H mode transitions is also envisioned, providing powerful information about the underlying physics. The influence of density fluctuations on optically thin ECE is discussed.  相似文献   

2.
3.
To measure the electron temperature (T(e)) and electron density (n(e)) profiles in the Korean Superconducting Tokamak Advanced Research (KSTAR) device for the KSTAR third campaign (September 2010), we designed and installed a Thomson scattering system. The KSTAR Thomson scattering system is designed as a tangential Thomson scattering system and utilizes the N-, L-, and B-ports. The N-port is designed for the collection optics with a cassette system, the L-port is the laser input port, and the B-port is the location of the beam dump. In this paper, we will describe the final design of the KSTAR Thomson scattering system.  相似文献   

4.
Deconvolution of Thomson scattering (TS) profiles is required when the gradient length of the electron temperature (T(e)) or density (n(e)) are comparable to the instrument function length (Δ(R)). The most correct method for deconvolution to obtain underlying T(e) and n(e) profiles is by consideration of scattered signals. However, deconvolution at the scattered signal level is complex since it requires knowledge of all spectral and absolute calibration data. In this paper a simple technique is presented where only knowledge of the instrument function I(r) and the measured profiles, T(e, observed)(r) and n(e, observed)(r), are required to obtain underlying T(e)(r) and n(e)(r). This method is appropriate for most TS systems and is particularly important where high spatial sampling is obtained relative to Δ(R).  相似文献   

5.
This article presents the results obtained in the diagnostics of a low pressure, low temperature plasma whose EEDF approaches to a Maxwellian one, and in which the positive ion temperature is not negligible small compared to the electron one. The diagnostic process is automatically developed by a Virtual Instrument (VI). The VI measures the IV characteristic curve of a cylindrical Langmuir probe immersed in the plasma. From this curve the VI obtains several parameters characterizing the plasma by using theoretical models describing the different zones of the IV characteristic curve. One of these models, which include the influence of the positive ion thermal motion, is applied in the positive ion saturation zone of the IV probe characteristic curve, where the perturbation due to the probe immersed in the plasma is negligible. The measurement process can be developed simultaneously in several points of the discharge and the time spent in the entire automatic processes, is about one second, so, spatial uniformity and temporal evolution in the plasma conditions can be analyzed.  相似文献   

6.
We report here on the application of an ultrashort-pulse reflectometer (USPR) to Large Helical Device in National Institute for Fusion Science. An impulse with picosecond pulse width is used as a source in an USPR. Since the bandwidth of a source is inversely related to the pulse width, we can utilize the frequency range of microwave to millimeter-wave by using wide band transmission lines. The density profiles can be reconstructed by collecting time-of-flight signal of each frequency component of an impulse reflected from each cutoff layer. Remote control system using super science information network has been introduced to the present USPR system.  相似文献   

7.
A simple method for the estimation of temperature and fraction of superthermal electrons in laser-produced plasmas is discussed.  相似文献   

8.
We developed and installed an electron cyclotron emission radiometer for taking measurements of Korea Superconducting Tokamak Advanced Research (KSTAR) plasma. In order to precisely measure the absolute value of electron temperatures, a calibration measurement of the whole radiometer system was performed, which confirmed that the radiometer has an acceptably linear output signal for changes in input temperature. It was also found that the output power level predicted by a theoretical calculation agrees with that obtained by the calibration measurement. We also showed that the system displays acceptable noise-temperature performance around 0.23 eV.  相似文献   

9.
The resistive bolometers have been successfully installed in the midplane of L-port in Korea Superconducting Tokamak Advanced Research (KSTAR) device. The spatial and temporal resolutions, 4.5 cm and ~1?kHz, respectively, enable us to measure the radial profile of the total radiated power from magnetically confined plasma at a high temperature through radiation and neutral particles. The radiated power was measured at all shots. Even at low plasma current, the bolometer signal was detectable. The electron cyclotron resonance heating (ECH) has been used in tokamak for ECH assisted start-up and plasma control by local heating and current drive. The detectors of resistive bolometer, near the antenna of ECH, are affected by electron cyclotron wave. The tomographic reconstruction, using the Phillips-Tikhonov regularization method, will be carried out for a major radial profile of the radiation emissivity of the circular cross-section plasma.  相似文献   

10.
A new method to measure electron temperature by an emissive probe has been proposed. The method is based on measurement of the functional relationship between the floating potential and the heating voltage of emissive probe. From the measured data of the floating potential change as a function of the heating voltage, the electron temperature could be determined by comparing with the theoretical curve obtained under the assumption of Maxwellian distribution. The overall characteristic of the floating potential change could be explained as a function of the heating voltage. The electron temperatures obtained by the present method were consistent with those measured by the rf-compensated Langmuir probe within the error. These experimental verifications were made in the electron density range of 2.6x10(11)-2.8x10(12) cm(-3). It was stressed that the present method is advantageous in that the probe is operated in a floating condition, hence applicable to plasmas produced in an insulated container.  相似文献   

11.
The development of an integrator for magnetic diagnostics becomes more important as the pulse length of fusion devices gets longer and longer, especially for present-day superconducting fusion devices. A small offset in the signal can cause a significant drift in the integrator output for long pulse experiments. A lock-in amplifying digital integrator has been developed for Wendelstein 7-X (W7-X). It succeeds in suppressing the drift to a low value but requires about 100 ms for data processing. To shorten the data processing time, a Field Programmable Gate Array (FPGA) built in the digitizer is utilized. Since there is no need to transfer the data to an external computer, the integration can be done in real time. The microprocessor built in the digitizer directly transfers the data integrated in the internal FPGA into the reflective memory installed in the same compact Peripheral Component Interconnect chassis. These features result in a very compact system design. The design and the preliminary results of the digital integrator will be presented.  相似文献   

12.
Large superconducting magnets such as ITER (International Thermonuclear Experimental Research) or KSTAR (Korean Superconducting Tokamak Advanced Research) magnet system adopted a cable-in-conduit conductor (CICC) using a forced-flow cooling system. Main optimization criteria for the conductor design of superconducting magnet system are stability margin and CICC cooling requirements. A zero-dimensional method is applied for the calculation of stability and the conductor optimization. In order to increase conductor performance, three different strands, ITER HP-I and HP-TI, and KSTAR HP-III, are tested. The strand characteristics of KSTAR HP-III are measured in the Samsung’s PPMS and Jc measurement system, and applied for this study. Also, the strand diameters, 0.81 mm and 0.78 mm are considered for this study, due to design change. Based on this result, the proposed configuration of CICC has been fabricated.  相似文献   

13.
We present the first simultaneous measurements of the Thomson scattering and electron cyclotron emission radiometer diagnostics performed at TCABR tokamak with Alfve?n wave heating. The Thomson scattering diagnostic is an upgraded version of the one previously installed at the ISTTOK tokamak, while the electron cyclotron emission radiometer employs a heterodyne sweeping radiometer. For purely Ohmic discharges, the electron temperature measurements from both diagnostics are in good agreement. Additional Alfve?n wave heating does not affect the capability of the Thomson scattering diagnostic to measure the instantaneous electron temperature, whereas measurements from the electron cyclotron emission radiometer become underestimates of the actual temperature values.  相似文献   

14.
In order to study the thermal-hydraulic behavior of the cable-in-conduit-conductor (CICC), a numerical model has been developed. In the model, the high heat transfer approximation between superconducting strands and supercritical helium is adopted. The strong coupling of heat transfer at the front of normal zone generates a contact discontinuity in temperature and density. In order to obtain the converged numerical solutions, a moving mesh method is used to capture the contact discontinuity in the short front region of the normal zone. The coupled equation is solved using the finite element method with the artificial viscosity term. Details of the numerical implementation are discussed and the validation of the code is performed for comparison of the results with thse of GANDALF and QSAIT.  相似文献   

15.
The charge exchange spectroscopy (CES) system on Korea Superconducting Tokamak Advanced Research (KSTAR) was installed last year and had been applied to measure the C VI ion temperature and rotation velocity profiles. The ion temperature and rotation velocity profiles had been estimated from the C VI 5290.5 ? (n = 8-7) charge-exchange spectrum signal measured by a Czerny-Turner type spectrometer and a thinned back-illuminated charge coupled device (CCD) camera. However, the Czerny-Turner type spectrometer used for the KSTAR CES system showed so low signal to noise ratio for KSTAR plasmas in the 2010 experimental campaign that the time resolution of the CES system had been limited to 100 ms due to the increased exposure time of the attached CCD camera. Then, new two-grating spectrometer had been developed in order to improve the time resolution of the CES system. The spectrometer consists of two gratings (1200 g/mm and 1800 g/mm each) with additive configuration, concave mirrors (f = 50 cm), and a cylindrical lens (f = 50 cm). The time resolution of the CES system increases by a factor of 2-4 with the two-grating spectrometer. The C VI ion temperature and rotation velocity profiles obtained by the two-grating spectrometer are compared to those by Czerny-Turner type spectrometer in this paper.  相似文献   

16.
The installation of a new electron cyclotron emission imaging diagnostic for the Korea Superconducting Tokamak Advanced Research (KSTAR) is underway, making use of a unique optical port cassette design, which allows placement of refractive elements inside the cryostat region without adverse effects. The result is unprecedented window access for the implementation of a state of the art imaging diagnostic. A dual-array optical design has been developed, capable of simultaneously imaging the high and low field sides of the plasma with independent features of focal plane translation, vertical zoom, and radial channel spacing. The number of translating optics has been minimized by making use of a zoom lens triplet and parabolic plasma facing lens for maximum channel uniformity over a continuous vertical zoom range of 3:1. The simulated performance of this design is presented along with preliminary laboratory characterization data.  相似文献   

17.
Journal of Mechanical Science and Technology - Understanding nanoscale fluidic transport becomes increasingly important due to the rapid development of nanotechnology and nanofabrication. By using...  相似文献   

18.
The control of the ratio of hydrogen to the deuterium is one of the very important issues for ion cyclotron range of frequency (ICRF) minority heating as well as the plasma wall interaction in the tokamak. The ratio of hydrogen to deuterium during the tokamak shot was deduced from the emission spectroscopy measurements during the KSTAR 2009 experimental campaign. Graphite tiles were used for the plasma facing components (PFCs) at KSTAR and its surface area exposed to the plasma was about 11?m(2). The data showed that it remained as high as around 50% during the campaign period because graphite tiles were exposed to the air for about two months and the hydrogen contents at the tiles are not fully pumped out due to the lack of baking on the PFC in the 2009 campaign. The validation of the spectroscopy method was checked by using the Zeeman effects and the ratio of hydrogen to the deuterium is compared with results from the residual gas analysis. During the tokamak shot, the ratio is low below 10% initially and saturated after around 1 s. When there is a hydrogen injection to the vessel via ion cyclotron wall conditioning and the boronization process where the carbone is used, the ratio of the hydrogen to the deuterium is increased by up to 100% and it recovers to around 50% after one day of operation. However it does not decrease below 50% at the end of the experimental campaign. It was found that the full baking on the PFC (with a high temperature and sufficient vacuum pumping) is required for the ratio control which guarantees the efficient ICRF heating at the KSTAR 2010 experimental campaign.  相似文献   

19.
在分析目前洞库油罐喷涂机器人(第1代)所采用的卷扬式提升机构现存问题的基础上,提出用液压自主蠕动式升降机构来替代卷扬式提升机构,由此形成鲜明特色的第2代喷涂机器人,并对其结构组成和运动原理进行分析,以及采用新结构后在液压系统、整体结构等方面做了改进.  相似文献   

20.
The core electron temperature (T(e0)) of neutral beam heated plasmas is determined in TJ-II stellarator by using soft x ray detectors with beryllium filters of different thickness, based on the method known as the foil absorption technique. T(e0) estimations are done with the impurity code IONEQ, making use of complementary information from the TJ-II soft x ray tomography and the VUV survey diagnostics. When considering the actual electron density and temperature profile shapes, an acceptable agreement is found with Thomson scattering measurements for 8 different magnetic configurations. The impact of the use of both neutral beam injectors on the T(e0) measurements is addressed. Also, the behaviour of T(e0) during spontaneous profile transitions is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号