首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Absolute bang time measurements with the gas Cherenkov detector (GCD) and gamma reaction history (GRH) diagnostic have been performed to high precision at the OMEGA laser facility at the University of Rochester with bang time values for the two diagnostics agreeing to within 5 ps on average. X-ray timing measurements of laser-target coupling were used to calibrate a facility-generated laser timing fiducial with rms spreads in the measured coupling times of 9 ps for both GCD and GRH. Increased fusion yields at the National Ignition Facility (NIF) will allow for improved measurement precision with the GRH easily exceeding NIF system design requirements.  相似文献   

2.
We present a compact high performance time-to-digital converter (TDC) module that provides 10 ps timing resolution, 160 ns dynamic range and a differential non-linearity better than 1.5% LSB(rms). The TDC can be operated either as a general-purpose time-interval measurement device, when receiving external START and STOP pulses, or in photon-timing mode, when employing the on-chip SPAD (single photon avalanche diode) detector for detecting photons and time-tagging them. The instrument precision is 15 ps(rms) (i.e., 36 ps(FWHM)) and in photon timing mode it is still better than 70 ps(FWHM). The USB link to the remote PC allows the easy setting of measurement parameters, the fast download of acquired data, and their visualization and storing via an user-friendly software interface. The module proves to be the best candidate for a wide variety of applications such as: fluorescence lifetime imaging, time-of-flight ranging measurements, time-resolved positron emission tomography, single-molecule spectroscopy, fluorescence correlation spectroscopy, diffuse optical tomography, optical time-domain reflectometry, quantum optics, etc.  相似文献   

3.
The potential of an x-ray magnifier prepared from a pair of asymmetrically cut crystals is studied to explore high energy x-ray imaging capabilities at high intensity laser facilities. OMEGA-EP and NIF when irradiating mid and high Z targets can be a source of high-energy x-rays whose production mechanisms and use as backlighters are a subject of active research. This paper studies the properties and potential of existing asymmetric cut crystal pairs from the National Institute of Standards and Technology (NIST) built in a new enclosure for imaging x-ray sources. The technique of the x-ray magnifier has been described previously. This new approach is aimed to find a design that could be used at laser facilities by magnifying the x-ray source into a screen far away from the target chamber center, with fixed magnification defined by the crystals' lattice spacing and the asymmetry angles. The magnified image is monochromatic and the imaging wavelength is set by crystal asymmetry and incidence angles. First laboratory results are presented and discussed.  相似文献   

4.
The National Ignition Facility (NIF) successfully completed its first inertial confinement fusion (ICF) campaign in 2009. A neutron time-of-flight (nTOF) system was part of the nuclear diagnostics used in this campaign. The nTOF technique has been used for decades on ICF facilities to infer the ion temperature of hot deuterium (D(2)) and deuterium-tritium (DT) plasmas based on the temporal Doppler broadening of the primary neutron peak. Once calibrated for absolute neutron sensitivity, the nTOF detectors can be used to measure the yield with high accuracy. The NIF nTOF system is designed to measure neutron yield and ion temperature over 11 orders of magnitude (from 10(8) to 10(19)), neutron bang time in DT implosions between 10(12) and 10(16), and to infer areal density for DT yields above 10(12). During the 2009 campaign, the three most sensitive neutron time-of-flight detectors were installed and used to measure the primary neutron yield and ion temperature from 25 high-convergence implosions using D(2) fuel. The OMEGA yield calibration of these detectors was successfully transferred to the NIF.  相似文献   

5.
A magnetic recoil spectrometer (MRS) has been built and successfully used at OMEGA for measurements of down-scattered neutrons (DS-n), from which an areal density in both warm-capsule and cryogenic-DT implosions have been inferred. Another MRS is currently being commissioned on the National Ignition Facility (NIF) for diagnosing low-yield tritium-hydrogen-deuterium implosions and high-yield DT implosions. As CR-39 detectors are used in the MRS, the principal sources of background are neutron-induced tracks and intrinsic tracks (defects in the CR-39). The coincidence counting technique was developed to reduce these types of background tracks to the required level for the DS-n measurements at OMEGA and the NIF. Using this technique, it has been demonstrated that the number of background tracks is reduced by a couple of orders of magnitude, which exceeds the requirement for the DS-n measurements at both facilities.  相似文献   

6.
This paper presents the technique for checking collision of through-hole components during the machine insertion process on a printed circuit board (PCB). The spatial representation technique is used to represent the components and the mounting head of an insertion machine. An algorithm that simulates the insertion process is written to detect any collision of component and mounting head during the insertion process. When a collision is detected, the algorithm will attempt to avoid the collision by re-sequencing the components concerned. If resequencing does not avoid the collision, the algorithm will compute a minimum safe distance for the affected component. The algorithm can also detect component collision due to components' space overlapping each other and subsequently can provide the minimum safe distance. The required safe spacing is based on the type of mounting head or machine used. The algorithm is a useful and efficient tool that could be used during the PCB design stage. The effectiveness of the spatial representation technique has been demonstrated using the TDK VC-544R/AR insertion machine.  相似文献   

7.
单次快前沿电脉冲信号的远距离低抖动传输   总被引:1,自引:0,他引:1  
本文介绍了一种低时间间隔抖动的单次快前沿脉冲序列信号的远距传输技术.该技术采用远距离传输高重频信号来产生单次触发信号,利用该技术在距信号源端100 m处获得了时间间隔抖动峰峰值小于100 ps的单次脉冲信号.该技术对我国新一代高功率固体激光驱动器以及其它需要高精度同步的仪器或者设备的设计具有较高的参考价值.  相似文献   

8.
Time scales of long-range physical processes in solids are typically in the range of picoseconds to nanoseconds. These times are commensurate with the time resolution of structural probes based on modern synchrotron x-ray sources. Several processes of technological and scientific interest can be driven by applied electric fields, but synchronizing electrically driven phenomena with an x-ray probe poses a technical challenge. We describe the synchronization of a well-defined number of fast electrical pulses with the time structure of synchrotron x rays to probe the dynamics of thin films and nanostructures. This synchronization technique yields x-ray transient signals with 600 ps transitions in ferroelectric thin films, with a contribution of approximately 320 ps due to timing jitter in the synchronization.  相似文献   

9.
以提高测距精度为目的,研究激光测距仪内部时序模块,对影响激光测距仪测距精度的因素进行分析。使用以外部延迟链芯片作为延迟线的方法,设计并制作了时序发生器的现场可编程门阵列(FPGA)开发板。测试结果表明,所设计的时序发生器能够实现11 ps的时序分辨率与最大600 Mbit/s的数据速率,达到了预期的目的。  相似文献   

10.
Dr K. Berndt 《Measurement》1987,5(4):159-166
Correlation analysis has become an important research tool in the investigation of signals and systems behaviour. We report on a special opto-electronic cross-correlator in which a silicon avalanche photodiode is used as the main component. The internal gain of this photodiode is pulse-modulated with 330 ps FWHM at 126 MHz repetition rate, or is modulated sinusoidally at frequencies of up to 882 MHz, respectively. In the pulsed mode, very weak repetitive optical pulses can be detected with 3 × 10−3 photons per pulse sensitivity, and with 10 ps timing accuracy. The second mode offers time-selective signal rejection capabilities with 3 ps time resolution. The opto-electronic cross-correlator can be used in displacement and distance measurement, robotics, time dispersion analysis in optical fibres, transient absorption spectroscopy, fluorescence decay measurement, lifetime-selective fluorescence detection, and in fluorescence signal suppression in Raman spectroscopy.  相似文献   

11.
This article deals with the time interval measurement device, which is based on a surface acoustic wave (SAW) filter as a time interpolator. The operating principle is based on the fact that a transversal SAW filter excited by a short pulse can generate a finite signal with highly suppressed spectra outside a narrow frequency band. If the responses to two excitations are sampled at clock ticks, they can be precisely reconstructed from a finite number of samples and then compared so as to determine the time interval between the two excitations. We have designed and constructed a two-channel time interval measurement device which allows independent timing of two events and evaluation of the time interval between them. The device has been constructed using commercially available components. The experimental results proved the concept. We have assessed the single-shot time interval measurement precision of 1.3 ps rms that corresponds to the time of arrival precision of 0.9 ps rms in each channel. The temperature drift of the measured time interval on temperature is lower than 0.5 ps/K, and the long term stability is better than +/-0.2 ps/h. These are to our knowledge the best values reported for the time interval measurement device. The results are in good agreement with the error budget based on the theoretical analysis.  相似文献   

12.
This paper presents a method for the optimal design of a slotless permanent magnet brushless DC (BLDC) motor with surface mounted magnets using an improved bee algorithm (IBA). The characteristics of the motor are expressed as functions of motor geometries. The objective function is a combination of losses, volume and cost to be minimized simultaneously. This method is based on the capability of swarm-based algorithms in finding the optimal solution. One sample case is used to illustrate the performance of the design approach and optimization technique. The IBA has a better performance and speed of convergence compared with bee algorithm (BA). Simulation results show that the proposed method has a very high/efficient performance.  相似文献   

13.
The first 96 and 192 beam vacuum Hohlraum target experiments have been fielded at the National Ignition Facility demonstrating radiation temperatures up to 340 eV and fluxes of 20 TW/sr as viewed by DANTE representing an ~20?times flux increase over NOVA/Omega scale Hohlraums. The vacuum Hohlraums were irradiated with 2 ns square laser pulses with energies between 150 and 635 kJ. They produced nearly Planckian spectra with about 30±10% more flux than predicted by the preshot radiation hydrodynamic simulations. To validate these results, careful verification of all component calibrations, cable deconvolution, and software analysis routines has been conducted. In addition, a half Hohlraum experiment was conducted using a single 2 ns long axial quad with an irradiance of ~2×10(15)?W/cm(2) for comparison with NIF Early Light experiments completed in 2004. We have also completed a conversion efficiency test using a 128-beam nearly uniformly illuminated gold sphere with intensities kept low (at 1×10(14)?W/cm(2) over 5 ns) to avoid sensitivity to modeling uncertainties for nonlocal heat conduction and nonlinear absorption mechanisms, to compare with similar intensity, 3 ns OMEGA sphere results. The 2004 and 2009 NIF half-Hohlraums agreed to 10% in flux, but more importantly, the 2006 OMEGA Au Sphere, the 2009 NIF Au sphere, and the calculated Au conversion efficiency agree to ±5% in flux, which is estimated to be the absolute calibration accuracy of the DANTEs. Hence we conclude that the 30±10% higher than expected radiation fluxes from the 96 and 192 beam vacuum Hohlraums are attributable to differences in physics of the larger Hohlraums.  相似文献   

14.
We present a setup for ultrafast x-ray diffraction (UXRD) based at the storage ring BESSY II, in particular, a pump laser that excites the sample using 250 fs laser-pulses at repetition rates ranging from 208 kHz to 1.25 MHz. We discuss issues connected to the high heat-load and spatio-temporal alignment strategies in the context of a UXRD experiment at high repetition rates. The spatial overlap between laser pump and x-ray probe pulse is obtained with 10 μm precision and transient lattice changes can be recorded with an accuracy of δa/a(0) = 10(-6). We also compare time-resolved x-ray diffraction signals from a laser excited LSMO/STO superlattice with phonon dynamics simulations. From the analysis we determine the x-ray pulse duration to 120 ps in standard operation mode and below 10 ps in low-α mode.  相似文献   

15.
Charge-injection devices (CIDs) are being used to image x rays in laser-fusion experiments on the University of Rochester's OMEGA Laser System. The CID cameras are routinely used up to the maximum neutron yields generated (~10(14)?DT). The detectors are deployed in x-ray pinhole cameras and Kirkpatrick-Baez microscopes. The neutron fluences ranged from ~10(7) to ~10(9)?neutrons/cm(2) and useful x-ray images were obtained even at the highest fluences. It is intended to use CID cameras at the National Ignition Facility (NIF) as a supporting means of recording x-ray images. The results of this work predict that x-ray images should be obtainable on the NIF at yields up to ~10(15), depending on distance and shielding.  相似文献   

16.
The first 3 of 18 neutron time-of-flight (nTOF) channels have been installed at the National Ignition Facility (NIF). The role of these detectors includes yield, temperature, and bang time measurements. This article focuses on nTOF data analysis and quality of results obtained for the first set of experiments to use all 192 NIF beams. Targets produced up to 2×10(10) 2.45 MeV neutrons for initial testing of the nTOF detectors. Differences in neutron scattering at the OMEGA laser facility where the detectors were calibrated and at NIF result in different response functions at the two facilities. Monte Carlo modeling shows this difference. The nTOF performance on these early experiments indicates that the nTOF system with its full complement of detectors should perform well in future measurements of yield, temperature, and bang time.  相似文献   

17.
A gas-phase time-of-flight (TOF) photoelectron spectrometer has been developed for use with synchrotron radiation. The excellent time structure of the synchrotron radiation at the Stanford Positron Electron Accelerator Ring (SPEAR) has been used as the time base for the TOF measurements. The TOF analyzer employs two multichannel plates (MCPs) in tandem as a fast electron multiplier with a matched 50-Omega anode to form an electron detector with a timing resolution of 相似文献   

18.
This paper reports the coupling of HRTEM and moiré pattern observations, allowing the determination of the thickness ratio of two superimposed crystals. Pseudo-lattice fringes are observed using identical TEM experimental conditions as for observing moiré patterns. The pseudo-lattice spacing is first calculated in the dynamical theory framework in two beam conditions. This approach shows a linear behavior of the spacing as a function of the thickness ratio of the two crystals. The roles of sample crystallographic orientation and sample thickness on the thickness ratio determination are discussed from multi-beam simulations. Finally, the method is applied on a bimetallic CuAg core-shell nanoparticle of a known structure. It is demonstrated that for this particle, the thickness ratio of Cu and Ag can be determined with an error that results in a precision less than 0.75 nm on the Cu and Ag thicknesses. The advantages of the technique are the use of an in-plane sample configuration and a single HRTEM image.  相似文献   

19.
The first demonstration of laser driven dynamic Hohlraums (LDDH) as a spectrally smooth backlighter source for opacity and temperature measurements through absorption spectrometry of materials in local thermodynamic equilibrium at temperatures >150 eV has been made. This is a crucial temperature regime for future astrophysics and ignition fusion experiments at the nearly completed National Ignition Facility (NIF) [E. I. Moses and C. R. Wuest, Fusion Sci. Technol. 47, 314 (2005)] at the Lawrence Livermore National Laboratory. The new backlighter consists of a LDDH filled with either krypton or argon that implodes to create an x-ray flash. The properties of this x-ray flash have been measured in experiments at the Omega laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] at the Laboratory for Laser Energetics in Rochester, New York, satisfying all requirements imposed by future experiments: (1) the emission spectrum extends to at least 5.5 keV, well above the maximum x-ray energy ( approximately 3.5 keV) obtained from the previously "best" opacity backlighters (uranium M-shell emission backlighters); (2) the spectrum is smooth and featureless (intensity variation <6% rms), allowing absorption spectrometry through experimental samples; (3) the emission source size is sufficiently small (<50 microm) for projection backlighting through future samples; (4) the emission is bright enough (and twice as bright as imploding hydrogen-filled capsules) for gated spectrometer measurements; (5) the emission duration is optimized ( approximately 100 ps) for the current and future generations of spectrometers; and (6) by using only a small number of beams with limited energy and symmetry for the backlighter (10 out of 60 beams in the Omega experiments), the majority of laser beams are left available for heating sample materials to >150 eV.  相似文献   

20.
Results of the beam tests of the prototype photon spectrometer PHOS for the ALICE experiment at the Large Hadron Collider (CERN) are presented. The spectrometer is based on detector elements composed of lead tungstate (PbWO4) crystals with dimensions of 22 × 22 × 180 mm and Hamamatsu S8664-55 (S8148) avalanche photodiodes. The beam tests have been performed on the secondary T10 beamline of the PS proton synchrotron. The main emphasis has been placed on the possibility of improving the PHOS timing resolution. Introduction of an additional timing channel with a silicon photomultiplier (SiPM) used as a photodetector is shown to improve the timing resolution for 1-GeV deposited energy from current value σ t = 3 to 0.3 ns. Silicon photomultipliers of the Hamamatsu MPPC S10362-33 family with an active area of 3 × 3 mm2 are used in these measurements. Using fast photomultiplier tubes with an 8-mm-diameter photocathode, the timing resolution attainable in electromagnetic shower development in a lead tungstate crystal has been measured for a large-area photodetector. The timing resolution for a deposited energy of 1 GeV is 150 ps. The effect of the detector channel temperature on the timing resolution is investigated. Cooling the crystal results in an increase both in the scintillation intensity and in the decay time of the scintillator and fails to substantially improve the timing resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号