共查询到19条相似文献,搜索用时 71 毫秒
1.
针对雷达高分辨距离像(HRRP)目标识别问题,传统方法只考虑样本的包络信息而忽略了距离单元间的时序相关性,该文提出了一种基于注意力机制的双向自循环神经网络模型。该模型将时域的HRRP数据通过滑窗分为正反两个序列,并将其分别通过两个相互独立的GRU网络进行特征提取,然后将同时刻提取到的特征进行拼接,从而利用了距离像双向的时序信息。考虑到不同时刻的序列对目标分类的重要性不同,通过注意力机制自适应地对各时刻隐层特征赋予不同的权值,最后根据加权求和后的隐层特征进行目标的识别与分类。实测数据实验结果表明,该文所提方法可以有效完成高分辨距离像的目标识别问题,并且在数据发生一定的时序偏移情况下,仍然可以准确找到目标区域。 相似文献
2.
3.
4.
基于半参数化概率密度估计的雷达目标识别 总被引:1,自引:1,他引:1
该文针对雷达目标高分辨距离像(High-Resolution Range Profile, HRRP)识别中距离单元回波幅值统计建模所面临的概率密度模型选择问题,提出一种基于半参数化概率密度估计的雷达目标识别方法。半参数化概率密度估计从参数化概率密度估计出发,有效利用了高分辨距离像各距离单元幅值近似服从Gamma分布的经验知识,并且通过非参数化修正因子对Gamma模型进行修正,达到参数化方法和非参数化方法优缺互补的目的。基于5种飞机模型高分辨距离像数据的仿真实验证明了该文方法的有效性。 相似文献
5.
针对雷达高分辨率距离像(HRRP)数据的识别问题,该文利用HRRP生成的时序特性,提出一种基于循环神经网络的注意模型。该模型利用具有记忆功能的循环神经网络对时域数据进行编码,并根据HRRP中不同距离单元所映射的隐层对目标识别的重要性,自适应地赋予隐层不同的权值系数,并根据隐层特征编码特征进行HRRP目标识别。该模型利用了隐藏在HRRP数据内部的目标结构信息,提高了特征的区分度。实测数据的实验结果表明,该方法可以有效地进行识别,在样本存在一定余度数据和样本偏移的情况下,都能准确地找出目标支撑区域。 相似文献
6.
7.
8.
9.
采用模板匹配分类器,对具有大、中、小3个尺寸级别的9类目标进行基于高分辨率雷达距离像(HRRP)的识别仿真试验,系统地研究了识别概率-信噪比-雷达带宽/载频之间的三维变化关系,分析了雷达信号参数对目标识别的影响,得到了有价值的研究结论。 相似文献
10.
高分辨一维距离像是雷达自动目标识别的重要特征之一,它对目标姿态变化很敏感,只有通过进一步处理才能够实现有效的目标识别。针对距离像的这种姿态敏感性,本文提出了一种基于混合因子建模的雷达目标识别框架,它通过对从各个姿态角下获得的目标一维距离像出发构建目标的距离像概率生成模型,然后利用该模型通过比较条件概率大小的方法判别目标类属。对5类飞机数据的实验结果表明该框架对任意姿态角距离像的目标识别有很好性能。 相似文献
11.
12.
为了松弛高分辨距离像(HRRP)的方位敏感性,传统的雷达HRRP目标识别方法大都采用目标在一定方位角域内的平均像作为方位模板.实际上,距离像的幅度起伏特性也包含了一定的目标特征信息.本文基于散射点模型理论,提出了一种利用距离像幅度起伏特性的特征提取新方法.新方法提取的加权距离像特征反映了各个距离单元内目标散射点的分布情况,可以更好地描述目标散射特性.基于外场实测数据的识别实验结果表明,新的特征提取方法可以大幅度地提高识别性能. 相似文献
13.
针对飞机目标的分类问题,提出了一种双辨别子空间高分辨距离像雷达目标识别方法.该方法首先依据Fisher准则导出距离像总散布矩阵的零空间中不含有辨别信息的结论,利用这一结论,对类间和类内散布矩阵进行预降维,降低了后续计算的复杂度.从全局的角度出发,基于类内散布矩阵零空间与非零空间所包含的辨别信息分别建立辨别子空间,实现对目标的特征提取.对ISAR实测飞机数据进行了分类,并与经典子空间方法进行比较,结果表明所提算法有效改善了目标识别性能. 相似文献
14.
15.
16.
提出了一种基于判别矢量子空间的雷达目标距离剖面像识别方法。判别矢量子空间一方面在分析意义上是较优的,同时该子空间的维数不受目标类别数限制,从而能够提取更有效的目标分类特征,改善目标正确识别率。仿真实验结果表明:该方法识别率高于特征图像方法和正则子空间法。 相似文献
17.
基于直接辨别分析的雷达目标一维距离像识别 总被引:1,自引:0,他引:1
提出了基于零空间的线性直接辨别分析与非线性推广直接辨别分析方法,并将其用于雷达目标一维距离像识别.与传统子空间方法相比,上述两种方法保留并充分利用了类内散度矩阵最具分辨力的零空间信息,因而大大提高了目标的识别性能.对三种实测飞机数据的识别结果表明了所提方法的有效性. 相似文献
18.
对一维高分辨率距离像(HRRP)进行预处理,解决高分辨距离像姿态、平移和幅度敏感性问题。对HRRP进行了目标子空间提取,基于子空间使用最大相关系数法对目标进行识别。实验结果表明,基于子空间法的目标识别具有较好的识别结果和较快的处理速度。 相似文献