首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aluminum- and calcium-incorporated MCM-41-type silica with various Al/Si and Ca/Si ratios were evaluated as catalytic supports for ring-opening polymerization (ROP) of l-lactide and ε-caprolactone. The catalytic centers were generated by grafting titanium(IV) isopropoxide onto the support. All prepared heterogeneous catalysts better restrained the ROP of lactide than the homogeneous analog, titanium(IV) isopropoxide. Compared to siliceous MCM-41, the incorporation of aluminum or calcium in MCM-41 framework improved the molecular weight of the polymers although it lessened the polymerization rate. The more acidic Al-MCM-41 support appeared to be more favorable than the more basic Ca-MCM-41 support for the ROP reactions.  相似文献   

2.
3.
Summary A commercial calcium dimethoxide and an in-situ generated calcium methoxide prepared from bis(tetrahydrofuran)calcium bis[bis(trimethylsilyl)amide] and methanol, were investigated as initiators for the ring-opening polymerization of ε-caprolactone and L-lactide. Commercial calcium dimethoxide initiated rapid ε-caprolactone polymerization at 120°C in bulk to give quantitatively a polymer with a polydispersity index around 1.3. Significant racemization was observed for L-lactide polymerization. The In-situ formed calcium methoxide promoted the solution polymerization of both ε-caprolactone and L-lactide to high conversion at room temperature over a short time period, yielding the corresponding polyesters with narrow molecular weight distribution. NMR spectra showed that the poly(L-lactide) isolated had a purely isotactic microstructure. The initiator efficiency could be tuned by varying the molar ratio of methanol and bis(tetrahydrofuran)calcium bis[bis(trimethylsilyl)amide]. Received: 11 August 2000/Revised version: 21 December 2000/Accepted: 3 January 2001  相似文献   

4.
5.
In this work, phosphotungstic acid (PTA) as a novel initiator was reported for the ring-opening polymerization (ROP) of ε-caprolactone (ε-CL). It was found that PTA was an efficient initiator. ROP of ε-CL can be readily initiated by PTA at room temperature and form poly(ε-caprolactone) with narrow molecular weight distribution. Polymerization mechanism study indicates that the polymerization proceeds via acyl-oxygen bond cleavage.  相似文献   

6.
In this paper a study of correlations between the microstructure of well defined poly(ε-caprolactone) (PCL) samples and their physical properties such as thermal degradation, crystallization kinetics and melting behavior is described. The PCL samples were obtained in the presence of the compound benzyl-methoxy-bis(2,4,6-triisopropylphenyl)tin (1), acting as single-site and living initiator, as well as in the presence of compounds Tip2SnRR′ [Tip = 2,4,6-triisopropylbenzene; R = R′ = CHCH2 (2); R = CH2Ph, R′ = Br (3)] activated by ionizing agents. PCL samples having different end groups, molecular weight and molecular weight distribution were obtained. The samples were fully characterized by GPC and NMR. The thermal degradation of the synthesized samples were studied by thermogravimetric analysis (TGA) in air flow. The experimental results suggested that the presence of ester chain end groups has a beneficial effect on the thermal stability of the PCL samples, independently on the molecular weights and molecular weight distribution. The crystallization behavior was studied in isothermal conditions at 37 °C, 40 °C, and 43 °C through differential scanning calorimetry (DSC). In this case, either the molecular weight (Mw) or the polydispersivity index (PDI) have a significant effect on the kinetics of crystallization of PCLs.  相似文献   

7.
Summary By using -butyrolactone (-BL) as the reaction media, highly active catalysts--light rare earth chloride-epoxidy---BL-for the solution polymerization of -caprolactone, have been obtained for the first time. With these catalyst, PCL with molecular weight as his as 40x104(Mv) can be prepared at 60°C for 1.5 hr. The amount of epoxide in catalyst solution, catalyst aging temperature and time affect the catalyst activity significantly. The mechanism study shows that in -BL, the weakening of Ln-Cl bonds by the donation of coordinated -BL with Ln3+ and the homogenous effect promote the reaction between light rare earth chloride and epoxide. The produced rare earth alkoxide initiates CL polymerization via a coordination-insertion mechanism with Acyl-oxygen bond cleavage.  相似文献   

8.
Graft copolymers of poly(methyl methacrylate) and polyamide-6 (PMMA-g–PA6) were investigated via in situ anionic polymerization of ε-caprolactam, using PMMA precursors with N-carbamated caprolactam pendants (PMMA–CCL) as macroactivators and sodium caprolactamate as catalyst. Three grades of PMMA–CCLs obtained by free radical copolymerization were used for synthesizing the PMMA-g–PA6 copolymers with different PMMA content. The resulting graft copolymer was characterized by Fourier-transform infrared spectroscopy and selective extraction. Scanning electron microscopy is used to clarify the phase morphology of obtained polymer by fracture surface. The thermal property, crystallinity and dimensional stability of graft copolymer were studied using differential scanning calorimetry, X-ray diffraction and water absorption measurement. The results show the Tg of graft copolymer is higher than that of neat PA6, but the onset and peak points of graft copolymer melting point are shifted to lower temperature. The percentage crystallinity and water absorption of PMMA-g–PA6 copolymer decrease with increasing PMMA content, but the crystal structure of PA6 is scarcely affected by the presence of PMMA. Graft copolymers have improved dimensional stabilities relative to neat PA6. Upon the incorporation of 19.9 wt% PMMA into PA6, the water absorption of PMMA-g–PA6 copolymer has been reduced from 4.8 for neat PA6 to 2.1%.  相似文献   

9.
Summary High molecular mass copolymers with microphase separation can be obtained in block copolymerization of -caprolactone with L,L- and D,L-lactide carried out in the presence of lithium t-butoxide. A kind of solvent applied strongly affects the molecular mass and polydispersity index of obtained copolymers.The study has been supported by the research program (Project 4-1743) of the Committee of Scientific Research in Poland.  相似文献   

10.
Te-Liang Yu  Chin-Che Chen 《Polymer》2005,46(16):5909-5917
Two novel magnesium aryloxides have been prepared and their catalytic activities toward ring-opening polymerization (ROP) of ε-caprolactone and l-lactide have been investigated. The reaction of 2,2′-(2-methoxybenzylidene)-bis(4,6-di(1-methyl-1-phenylethyl)phenol) (MEMPEP-H2) (1) and 2,2′-methylene-bis(4,6-di(1-methyl-1-phenylethyl)phenol) (MMPEP-H2) with nBu2Mg yield dimeric magnesium complexes [Mg(μ-MEMPEP)(THF)]2 (2) and [Mg(μ-MMPEP)(THF)]2 (3), respectively. Catalytic studies of complexes 2 and 3 illustrate that both 2 and 3 are good catalysts in ε-caprolactone and l-lactide polymerization. Theoretical study of the ROP mechanism of ε-caprolactone catalyzed by 2 demonstrates that the initiator, benzyl alcohol, is activated by the formation of a hydrogen bond with the phenoxy oxygen of MEMPEP2− ligand.  相似文献   

11.
The ring-opening polymerization of ?-caprolactone (CL) was induced by using polypropylene glycol (PPG) as an initiator in the presence of the monomer activator HCl·Et2O to synthesize triblock copolymers composed of PPG and poly(?-caprolactone) (PCL). The degree of CL conversion and the molecular weight of PCL increased linearly with the polymerization time or with the feed ratio of CL to PPG in the presence of HCl·Et2O in CH2Cl2 at 25 °C. The PCLs obtained had molecular weights close to the theoretical values calculated from the CL:PPG molar ratios and exhibited monomodal GPC curves with narrow polydispersity indexes. The apparent rate constant (kapp) for the polymerization of CL activated by HCl·Et2O was greatly affected by the ratio of HCl·Et2O/PPG. The activation energy for the polymerization of CL in this system was estimated to be 49.8 kJ/mol K. We successfully prepared PPG and PCL triblock copolymers using this activated monomer mechanism.  相似文献   

12.
Coordinative chain transfer polymerization (CCTP) of isoprene was investigated by using the typical Ziegler–Natta catalytic system [Nd(Oi-Pr)3/Al(i-Bu)2H/Me2SiCl2] with Al(i-Bu)2H as cocatalyst and chain transfer agent (CTA). The catalyst system exhibited high catalytic efficiency for the reversible CCTP of isoprene and yielded 6–8 polymer chains per Nd atom due to the high chain transfer ability of Al(i-Bu)2H. The narrow molecular weight distribution (Mw/Mn = 1.22–1.45) of the polymers, the good linear relationship between the Mn and yield of the polymer, and the feasible seeding polymerization of isoprene indicated the living natures of the catalyst species. Moreover, the living Nd-polyisoprene active species could further initiate the ring-opening polymerization of polar monomer (ε-caprolactone) to afford an amphiphilic block copolymer consisting of cis-1,4-polyisoprene and poly(ε-caprolactone) with controllable molecular weight and narrow molecular weight distribution.  相似文献   

13.
Macromonomers based on poly(ε-caprolactone) (PCL) with α,ω-thiophene functional end groups were prepared in bulk by enzymatic polymerization using immobilized Candida Antarctica lipase B (Novozym 435) as the catalyst. In the synthesis strategy, 3-thiophenemethanol was used to initiate the enzyme-assisted ring-opening polymerization of ε-caprolactone (ε-CL) to yield PCL with α-thiophene end group (initiation reaction, ThPCL) and then 3-thiopheneacetic acid was added to prepolymerized ε-CL to introduce ω-thiophene functionality in termination step (ThPCLTh). Macromonomers were characterized by 1H and 13C NMR, FTIR, and GPC. Moreover, the obtained macromonomers were employed in electropolymerization experiments and copolymers with thiophene or pyrrole were synthesized through their end thiophene groups. These polymers were characterized by cyclic voltammetry (CV), FTIR, and scanning electron microscopy (SEM). Conductivity measurements were carried out by the four-probe technique.  相似文献   

14.
Functionalized graphene oxide-modified poly(ε-caprolactone) composites ((graphene oxide)GO/PCL) were successfully synthesized by Steglich esterification for drug applications of controlled release. Lomefloxacin (LMF) was selected as a model drug to investigate its controlled release properties. The controlled release effect of the LMF-contained pills of the GO/PCL and polylactic acid blend was evaluated. In contrast to the pure PCL, GO/PCL could effectively adjust the time of drug release and release the drug at a constant rate, achieving the controlled release requirements. Furthermore, different additive amounts of graphene oxide have different effects on adjusting the time of controlled release, while the best result obtained under the ratio is 4% GO/PCL as carrier of drug. Thus, high-quality drug carrier materials are obtained which are more suitable for clinical use. Exploring the optimum addition of graphene oxide is very significant for the development of GO/PCL carrier material.  相似文献   

15.
Guo G  Fu S  Zhou L  Liang H  Fan M  Luo F  Qian Z  Wei Y 《Nanoscale》2011,3(9):3825-3832
The purpose of this work was to develop implantable curcumin-loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL, PCEC) nanofibers, which might have potential application in cancer therapy. Curcumin was incorporated into biodegradable PCEC nanofibers by electrospinning method. The surface morphology of the composite nanofibers was characterized on Scanning Electron Microscope (SEM). The average diameter of the nanofibers was 2.3-4.5μm. In vitro release behavior of curcumin from the fiber mats was also studied in detail. The in vitro cytotoxicity assay showed that the PCEC fibers themselves did not affect the growth of rat Glioma 9L cells. Antitumor activity of the curcumin-loaded fibers against the cells was kept over the whole experiment process, while the antitumor activity of pure curcumin disappeared within 48 h. These results strongly suggested that the curcumin/PCEC composite nanofibers might have potential application for postoperative chemotherapy of brain cancers.  相似文献   

16.
17.
Summary A study on the copolymerization of glycolide with lactide and glycolide with ɛ-caprolactone was performed in the presence of zirconium (IV) acetylacetonate at moderate temperatures (100° and 150°C). Zirconium acetylacetonate appeared to be an efficient initiator of copolymerization. The obtained polymers were characterized by high molecular weights. Considerable influence of transesterification on the polymer chain microstructure was found. Received: 13 October 1998/Revised version: 4 January 1999/Accepted: 4 January 1999  相似文献   

18.
Summary The large difference in reactivity of L-lactide and -caprolactone in ring opening polymerization with stannous octoate, leads to the formation of copolymers with blocky structures. By varying the polymerization temperature, copolymers with different average sequence lengths and molecular weights can be synthesized. It is shown that the average monomer sequence length has a large effect on the thermal and mechanical properties of these copolymers.  相似文献   

19.
Radical polymerization of methyl methacrylate (MMA) in the presence of methyl -(bromomethyl) acrylate yielded poly-(MMA) bearing the 2-methoxycarbonylallyl end group through chain reaction involving bimol ecular termination. The molecular weight of the resultant polymer was effectively controlled with a small amount of the bromomethylacrylate added; the chain transfer constant was estimated to be 0.9. The poly (MMA) with the unsaturated end group (
  相似文献   

20.
The effect of accelerated weathering degradation on the properties of poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) blends and PLA/PCL/titanium (IV) dioxide (TiO2) nanocomposites are presented in this paper. The results show that both polymers are susceptible to weathering degradation, but their degradation rates are different and are also influenced by the presence of TiO2 in the samples. Visual, microscopic and atomic force microsocpy observations of the surface after accelerated weathering tests confirmed that degradation occurred faster in the PLA/PCL blends than in the PLA/PCL/TiO2 nanocomposites. The X-ray diffraction results showed the degradation of PCL in the disappearance of its characteristic peaks over weathering time, and also confirmed that PLA lost its amorphous character and developed crystals from the shorter chains formed as a result of degradative chain scission. It was further observed that the presence of TiO2 retarded the degradation of both PLA and PCL. These results were supported by the differential scanning calorimetry results. The thermogravimetric analysis results confirmed that that PLA and PCL respectively influenced each other's thermal degradation, and that TiO2 played a role in the thermal degradation of both PLA and PCL. The tensile properties of both PLA/PCL and PLA/PCL/TiO2 were significantly reduced through weathering exposure and the incorporation of TiO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号