共查询到17条相似文献,搜索用时 64 毫秒
1.
连续变断面循环挤压制备细晶材料的新方法 总被引:1,自引:0,他引:1
提出了一种新的制备细晶材料的大变形方法--连续变断面循环挤压.其工作原理是:先将圆柱体试样在位于同一中心线上的挤压筒、锥形模内挤压成圆台体,再镦粗成圆柱体.换向180°继续挤压和镦粗,四道工序完成一个循环,重复以上过程,使应变量累积而获得大变形.挤压成的圆台体镦粗时,由上底面至下底面各单元层的变形逐渐减小,不会出现鼓形或失稳现象.文中推导了应变量与变形前后试样高度H和h之间关系的算式,得出n次循环挤压后的累积应变量εn=4n1nh/h.通过对铸态纯铝1A85挤压后的宏观及微观组织观察,其晶粒被反复拉长、压缩而破碎成等轴晶,挤压4循环后的晶粒平均尺寸被细化到1μm. 相似文献
2.
3.
4.
5.
研究连续变断面循环挤压变形道次、变形温度、变形速度对TC4合金组织的影响。结果表明:在临近再结晶温度变形时,随着变形道次的增加,晶粒的细化程度随之增加;而在较高温度变形时,随着变形道次的增加,晶粒的细化程度先增大后减小,且6道次的细化效果较佳。随着变形温度的升高,由于再结晶的作用,晶粒的细化程度先增大再减小,且在800℃变形时,细化效果较佳;提高变形速度有利于晶粒的细化,但当变形速度过高时,组织分布的均匀性较差。当TC4合金在800℃以2 mm/s经6道次变形后,初生α相尺寸由14μm细化至2~3μm左右,且组织分布较均匀。 相似文献
6.
采用连续变断面循环挤压对TC4钛合金进行变形,研究变形工艺参数对TC4合金沿径向显微组织及显微硬度的影响。结果表明,随着变形温度升高,α相尺寸虽然变化较小但还是有一定程度的长大;变形速度对显微组织中初生α相的含量影响较小,但对其形态和晶粒尺寸的影响相对较大:低速变形时,初生α相呈长条状,而以较高速度变形时,初生α相晶粒呈等轴状,且晶粒有一定程度细化,这是由于在该变形条件下发生了完全动态再结晶;随着变形道次的增加,晶粒细化程度增加,当试样经6道次循环挤压后组织细化效果显著,由原始尺寸的10μm细化至4μm。变形温度及变形速度对试样沿径向的显微硬度分布影响较小,但循环道次却对其影响较显著,随着循环道次的增加,试样沿径向显微硬度值较高且同一试样上的差异较小、分布较均匀,这与组织得到显著细化及均匀化有关。 相似文献
7.
冯银敏刘莹莹张乐虎银程丹蔡军 《材料热处理学报》2017,(9):162-168
采用Deform软件模拟TC4钛合金棒材以连续变断面循环挤压细化组织效果较好的一组参数:变形温度800℃,挤压速度2 mm/s,6道次循环变形时的应力场、应变场及温度场。结果表明,随着变形循环道次的增加,应变量随之增加,在圆柱坯料高度方向的中间区域等效应变分布较为均匀;对比同一变形循环的挤压工序与镦粗工序,挤压工序的等效应力稍大;此外,变形试样中心区域的温度较高且为大变形区,其原因是试样外表面与模具之间存在热交换而导致试样表面温度较低。但就整体而言,试样变形量分布还是相对均匀,这与其显微组织及显微硬度沿径向分布较均匀的试验结果一致。 相似文献
8.
试验分析了阶段变断面铝合金型材挤压过程中各种挤压缺陷的形成原因,提出了相关的解决办法,为后续的精整工序打好了基础,大大提高了生产效率,提高了成品率。 相似文献
9.
10.
11.
12.
13.
基于DEFORM3D模拟软件,针对连续挤压包覆过程中模腔流动通道长度和挤压轮转速对铝护套产品的影响进行有限元模拟分析,并进行实验验证。结果表明,模腔中流动通道长度对改善金属流动的均匀性、产品的弯曲角度和横截面的椭圆度发挥重要的作用,增加流动通道长度,可以使产品的流动速度变得均匀,产品的弯曲角度接近理想的零值,并可以获得良好的截面形状;当使用较长的流动通道时,挤压轮转速对产品的弯曲角影响不大。 相似文献
14.
15.
16.
在双坯料连续挤压过程中,由于两根坯料汇合而形成挤压焊缝.通过显微组织观察、拉伸试验、扫描电镜研究挤压轮转速对6063铝合金焊缝显微组织形貌和性能的影响,并通过有限元仿真分析焊合参数.结果表明,在连续挤压过程中,坯料外表面的氧化物对金属焊合有显著影响,随着挤压速度的增加,等效应变速率明显增加,造成焊合面上的氧化物的破碎程... 相似文献
17.
挤压比对6201铝合金半固态连续挤压成形组织和性能的影响 总被引:1,自引:1,他引:1
研究了挤压比对6201合金线材的微观组织、力学性能和导电性能的影响.结果表明:随着挤压比的增大,T6态合金的强化相β'(Mg2Si)弥散质点的尺寸减小,弥散程度增加,合金线材的抗拉强度,延伸率和电阻率增大,其增大的趋势随着挤压比的进一步增加而逐渐减小;当挤压比一定时,随着在线固溶温度与时效温度的升高,线材的力学性能下降,导电性能升高.当挤压比为16.5~29.7,线固溶温度为520~540℃,时效温度为150~160℃时,合金力学性能和导电性能分别为:σb=310~328 MPa,δ=8.5%~10.3%,ρ=0.032 2~0.032 8nΩ·m,较好地满足Al-Mg-Si导线标准要求.采用合理的挤压比,可直接生产性能良好的铝合金导电线材. 相似文献