首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Signal transduction across cell membranes often involves the activation of both phosphatidylinositol (PI)-specific phospholipase C (PLC) and phosphoinositide 3-kinase (PI 3-kinase). Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), a substrate for both enzymes, is converted to phosphatidylinositol 3,4, 5-trisphosphate (PI(3,4,5)P3) by the action of PI 3-kinase. Here, we show that PI(3,4,5)P3 activates purified PLC-gamma isozymes by interacting with their Src homology 2 domains. Furthermore, the expression of an activated catalytic subunit of PI 3-kinase in COS-7 cells resulted in an increase in inositol phosphate formation, whereas platelet-derived growth factor-induced PLC activation in NIH 3T3 cells was markedly inhibited by the specific PI 3-kinase inhibitor LY294002. These results suggest that receptors coupled to PI 3-kinase may activate PLC-gamma isozymes indirectly, in the absence of PLC-gamma tyrosine phosphorylation, through the generation of PI(3,4,5)P3.  相似文献   

2.
Platelets express a single class of Fcgamma receptor (FcgammaRIIA), which is involved in heparin-associated thrombocytopenia and possibly in inflammation. FcgammaRIIA cross-linking induces platelet secretion and aggregation, together with a number of cellular events such as tyrosine phosphorylation, activation of phospholipase C-gamma2 (PLC-gamma2), and calcium signaling. Here, we show that in response to FcgammaRIIA cross-linking, phosphatidylinositol (3,4, 5)-trisphosphate (PtdIns(3,4,5)P3) is rapidly produced, whereas phosphatidylinositol (3,4)-bisphosphate accumulates more slowly, demonstrating a marked activation of phosphoinositide 3-kinase (PI 3-kinase). Inhibition of PI 3-kinase by wortmannin or LY294002 abolished platelet secretion and aggregation, as well as phospholipase C (PLC) activation, indicating a role of this lipid kinase in the early phase of platelet activation. Inhibition of PLCgamma2 was not related to its tyrosine phosphorylation state, since wortmannin actually suppressed its dephosphorylation, which requires platelet aggregation and integrin alphaIIb/beta3 engagement. In contrast, the stable association of PLCgamma2 to the membrane/cytoskeleton interface observed at early stage of platelet activation was fully abolished upon inhibition of PI 3-kinase. In addition, PLCgamma2 was able to preferentially interact in vitro with PtdIns(3,4,5)P3. Finally, exogenous PtdIns(3,4,5)P3 restored PLC activation in permeabilized platelets treated with wortmannin. We propose that PI 3-kinase and its product PtdIns(3,4,5)P3 play a key role in the activation and adequate location of PLCgamma2 induced by FcgammaRIIA cross-linking.  相似文献   

3.
Bruton's tyrosine kinase (Btk) is essential for normal B lymphocyte development and function. The activity of Btk is partially regulated by transphosphorylation within its kinase domain by Src family kinases at residue Tyr-551 and subsequent autophosphorylation at Tyr-223. Activation correlates with Btk association with cellular membranes. Based on specific loss of function mutations, the Btk pleckstrin homology (PH) domain plays an essential role in this activation process. The Btk PH domain can bind in vitro to several lipid end products of the phosphatidylinositol 3-kinase (PI 3-kinase) family including phosphatidylinositol 3,4,5-trisphosphate. Activation of Btk as monitored by elevation of phosphotyrosine content and a cellular transformation response was dramatically enhanced by coexpressing a weakly activated allele of Src (E378G) and the two subunits of PI 3-kinase-gamma. This activation correlates with new sites of phosphorylation on Btk identified by two-dimensional phosphopeptide mapping. Activation of Btk was dependent on the catalytic activity of all three enzymes and an intact Btk PH domain and Src transphosphorylation site. These combined data define Btk as a downstream target of PI 3-kinase-gamma and Src family kinases.  相似文献   

4.
Signal transduction through phosphoinositide 3-OH kinase (PI 3-kinase) has been implicated in the regulation of lymphocyte adhesion mediated by integrin receptors. Cellular phosphorylation products of PI 3-kinases interact with a subset of pleckstrin homology (PH) domains, a module that has been shown to recruit proteins to cellular membranes. We have recently identified cytohesin-1, a cytoplasmic regulator of beta2 integrin adhesion to intercellular adhesion molecule 1. We describe here that expression of a constitutively active PI 3-kinase is sufficient for the activation of Jurkat cell adhesion to intercellular adhesion molecule 1, and for enhanced membrane association of cytohesin-1. Up-regulation of cell adhesion by PI 3-kinase and membrane association of endogenous cytohesin-1 is abrogated by overexpression of the isolated cytohesin-1 PH domain, but not by a mutant of the PH domain which fails to associate with the plasma membrane. The PH domain of Bruton's tyrosine kinase (Btk), although strongly associated with the plasma membrane, had no effect on either membrane recruitment of cytohesin-1 or on induction of adhesion by PI 3-kinase. Having delineated the critical steps of the beta2 integrin activation pathway by biochemical and functional analyses, we conclude that PI 3-kinase activates inside-out signaling of beta2 integrins at least partially through cytohesin-1.  相似文献   

5.
PIP3BP is a phosphatidylinositol 3,4,5-trisphosphate-binding protein (PIP3BP) abundant in brain, containing a zinc finger motif and two pleckstrin homology (PH) domains. Staining of rat brain cells with anti-PIP3BP antibody and determination of localization of PIP3BP fused to the green fluorescent protein (GFP-PIP3BP) revealed that PIP3BP was targeted to the nucleus. Targeting was dependent on a putative nuclear localization signal in PIP3BP. Generation of PIP3 in the nucleus was detected in H2O2-treated 293T cells, nerve growth factor (NGF)-treated PC12 cells, and platelet-derived growth factor (PDGF)-treated NIH 3T3 cells. Translocation of phosphatidylinositol 3-kinase (PI 3-kinase) to the nucleus and enhanced activity of PI 3-kinase in the nucleus fraction were observed after H2O2 treatment of 293T cells, suggesting that PI 3-kinase can be activated in the nucleus as well as in the membrane after appropriate stimulation of the cells. Co-expression of the constitutively active PI 3-kinase with PIP3BP resulted in exportation of the protein from the nucleus to the cytoplasm, suggesting that PIP3BP can function as a PIP3-binding protein in the intact cells. These results imply that there may be an unknown function of PI 3-kinase in the nucleus.  相似文献   

6.
7.
Biochemical and immunochemical data from the present investigation reveal the existence of a p85/p110 phosphoinositide 3-kinase (PI 3-kinase) in rat liver nuclei. 32P-Labeling of membrane phosphoinositides by incubating intact nuclei with [gamma-32P]ATP results in the formation of [32P]phosphatidyl-inositol 3,4, 5-trisphosphate [PtdIns(3,4,5)P3], accompanied by small quantities of [32P]phosphatidylinositol 3-phosphate [PtdIns(3)P]. Studies with subnuclear fractions indicate that the PI 3-kinase is not confined to nuclear membranes. The nuclear soluble fraction also contains PI 3-kinase and an array of inositide-metabolizing enzymes, including phospholipase C (PLC), phosphoinositide phosphatase, and diacylglycerol (DAG) kinase. As a result, exposure of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] to the nuclear extract in the presence of [gamma-32P]ATP generates a series of 32P-labeled D-3 phosphoinositides and phosphatidic acid (PA) in an interdependent manner. On the basis of the immunological reactivity and kinetic behavior, the nuclear PI 3-kinase is analogous, if not identical, to PI 3-kinase alpha, and constitutes about 5% of the total PI 3-kinase in the cell. Moreover, we test the premise that nuclear PI 3-kinase may, in part, be regulated through the control of substrate availability by PtdIns(4,5)P2-binding proteins. Effect of CapG, a nuclear actin-regulatory protein, on PI 3-kinase activity is examined in view of its unique Ca2+-dependent PtdIns(4, 5)P2-binding capability. In vitro data show that the CapG-mediated inhibition of nuclear PI 3-kinase is prompted by PKC phosphorylation of CapG and elevated [Ca2+]. This CapG-dependent regulation provides a plausible link between nuclear PLC and PI 3-kinase pathways for cross-communications. Taken together, these findings provide definite data concerning the presence of an autonomous PI 3-kinase cycle in rat liver nuclei. The nuclear location of PI 3-kinase may lead to a better understanding regarding its functional role in transducing signals from the plasma membrane to the nucleus in response to diverse physiological stimuli.  相似文献   

8.
Phosphatidylinositol 3-kinase (PI3K) mediates a variety of cellular responses by generating PtdIns(3,4)P2 and PtdIns(3,4,5)P3. These 3-phosphoinositides then function directly as second messengers to activate downstream signaling molecules by binding pleckstrin homology (PH) domains in these signaling molecules. We have established a novel assay in the yeast Saccharomyces cerevisiae to identify proteins that bind PtdIns(3,4)P2 and PtdIns(3,4,5)P3 in vivo which we have called TOPIS (Targets of PI3K Identification System). The assay uses a plasma membrane-targeted Ras to complement a temperature-sensitive CDC25 Ras exchange factor in yeast. Coexpression of PI3K and a fusion protein of activated Ras joined to a PH domain known to bind PtdIns(3,4)P2 (AKT) or PtdIns(3,4,5)P3 (BTK) rescues yeast growth at the non-permissive temperature of 37 degreesC. Using this assay, we have identified several amino acids in the beta1-beta2 region of PH domains that are critical for high affinity binding to PtdIns(3,4)P2 and/or PtdIns(3,4,5)P3, and we have proposed a structural model for how these PH domains might bind PI3K products with high affinity. From these data, we derived a consensus sequence which predicts high-affinity binding to PtdIns(3, 4)P2 and/or PtdIns(3,4,5)P3, and we have identified several new PH domain-containing proteins that bind PI3K products, including Gab1, Dos, myosinX, and Sbf1. Use of this assay to screen for novel cDNAs which rescue yeast at the non-permissive temperature should provide a powerful approach for uncovering additional targets of PI3K.  相似文献   

9.
Cell attachment to fibronectin stimulates the integrin-dependent interaction of p85-associated phosphatidylinositol (PI) 3-kinase with integrin-dependent focal adhesion kinase (FAK) as well as activation of the Ras/mitogen-activated protein (MAP) kinase pathway. However, it is not known if this PI 3-kinase-FAK interaction increases the synthesis of the 3-phosphorylated phosphoinositides (3-PPIs) or what role, if any, is played by activated PI 3-kinase in integrin signaling. We demonstrate here the integrin-dependent accumulation of the PI 3-kinase products, PI 3,4-bisphosphate [PI(3,4)P2] and PI(3,4,5)P3, as well as activation of AKT kinase, a serine/threonine kinase that can be stimulated by binding of PI(3,4)P2. The PI 3-kinase inhibitors wortmannin and LY294002 significantly decreased the integrin-induced accumulation of the 3-PPIs and activation of AKT kinase, without having significant effects on the levels of PI(4,5)P2 or tyrosine phosphorylation of paxillin. These inhibitors also reduced cell adhesion/spreading onto fibronectin but had no effect on attachment to polylysine. Interestingly, integrin-mediated Erk-2, Mek-1, and Raf-1 activation, but not Ras-GTP loading, was inhibited at least 80% by wortmannin and LY294002. In support of the pharmacologic results, fibronectin activation of Erk-2 and AKT kinases was completely inhibited by overexpression of a dominant interfering p85 subunit of PI 3-kinase. We conclude that integrin-mediated adhesion to fibronectin results in the accumulation of the PI 3-kinase products PI(3,4)P2 and PI(3,4,5)P3 as well as the PI 3-kinase-dependent activation of the kinases Raf-1, Mek-1, Erk-2, and AKT and that PI 3-kinase may function upstream of Raf-1 but downstream of Ras in integrin activation of Erk-2 MAP and AKT kinases.  相似文献   

10.
Cellular levels of phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) are rapidly elevated in response to activation of growth factor receptor tyrosine kinases. This polyphosphoinositide binds the pleckstrin homology (PH) domain of GRP1, a protein that also contains 200 residues with high sequence similarity to a segment of the yeast Sec7 protein that functions as an ADP ribosylation exchange factor (ARF) (Klarlund, J., Guilherme, A., Holik, J. J., Virbasius, J. V., Chawla, A., and Czech, M. P. (1997) Science 275, 1927-1930). Here we show that dioctanoyl PtdIns(3,4,5)P3 binds the PH domain of GRP1 with a Kd = 0.5 microM, an affinity 2 orders of magnitude greater than dioctanoyl-PtdIns(4,5)P2. Further, the Sec7 domain of GRP1 is found to catalyze guanine nucleotide exchange of ARF1 and -5 but not ARF6. Importantly, PtdIns(3,4,5)P3, but not PtdIns(4,5)P2, markedly enhances the ARF exchange activity of GRP1 in a reaction mixture containing dimyristoylphosphatidylcholine micelles, 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid, and a low concentration of sodium cholate. PtdIns(3,4,5)P3-mediated ARF nucleotide exchange through GRP1 is selectively blocked by 100 microM inositol 1,3,4,5-tetrakisphosphate, which also binds the PH domain of GRP1. Taken together, these data are consistent with the hypothesis that selective recruitment of GRP1 to PtdIns(3,4,5)P3 in membranes activates ARF1 and -5, known regulators of intracellular membrane trafficking.  相似文献   

11.
A number of reports suggest that under different conditions leading to cytoskeleton reorganization the GTPase Rac1 and possibly RhoA are downstream targets of phosphoinositide 3-kinase (PI 3-kinase). In order to gain more insight into this particular signaling pathway, we have addressed the question of a possible direct interaction of PI 3-kinase products with the Rho family GTPases RhoA, Rac1, and Cdc42. Using recombinant proteins, we found that Rac1 and, to a lesser extent, RhoA but not Cdc42 were capable to selectively bind to phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) in a mixture of crude brain phosphoinositides. Nucleotide-depleted Rac1 was the most efficient, but the GDP- and GTP-bound forms retained significant PtdIns(3,4,5)P3 binding activity. This protein-lipid association involved electrostatic as well as hydrophobic interactions, since both phosphate groups located at specific positions of the inositol ring and fatty-acyl chains were absolutely required. Based on the sequence of Rac1, two potential binding sites were identified, one at the C terminus and one in the extra alpha-helical domain. Deletion of these two domains resulted in a complete loss of binding to PI 3-kinase products. Finally, PtdIns(3, 4,5)P3 strongly stimulated GDP dissociation from Rac1 in a dose-dependent manner. In agreement, data obtained in intact cells suggest that PtdIns(3,4,5)P3 might target Rac1 to peculiar membrane domains, allowing formation of specific clusters containing not only small GTPases but other partners bearing pleckstrin homology domains such as specific exchange factors required for Rac1 and RhoA activation.  相似文献   

12.
Upon binding of platelet-derived growth factor (PDGF), the PDGF beta receptor (PDGFR) undergoes autophosphorylation on distinct tyrosine residues and binds several SH2-domain-containing signal relay enzymes, including phosphatidylinositol 3-kinase (PI3K), phospholipase C gamma (PLC gamma), the GTPase-activating protein of Ras (RasGAP), and the tyrosine phosphatase SHP-2. In this study, we have investigated whether PDGF-dependent PI3K activation is affected by the other proteins that associate with the PDGFR. We constructed and characterized a series of PDGFR mutants which contain binding sites for PI3K as well as one additional protein, either RasGAP, SHP-2, or PLC gamma. While all of the receptors had wild-type levels of PDGF-stimulated tyrosine kinase activity and associated with comparable amounts of PI3K activity, their abilities to trigger accumulation of PI3K products in vivo differed dramatically. The wild-type receptor, as well as receptors that recruited PI3K or PI3K and SHP-2, were all capable of fully activating PI3K. In contrast, receptors that associated with PI3K and RasGAP or PI3K and PLC gamma displayed a greatly reduced ability to stimulate production of PI3K products. When this series of receptors was tested for their ability to activate Ras, we observed a strong positive correlation between Ras activation and PI3K activation. Further investigation of the relationship between Ras and PI3K indicated that Ras was upstream of PI3K. Thus, activation of PI3K requires not only binding of PI3K to the tyrosine-phosphorylated PDGFR but accumulation of GTP-bound Ras as well. Furthermore, PLC gamma and RasGAP negatively modulate PDGF-dependent PI3K activation. Finally, PDGF-stimulated signal relay can be regulated by altering the ratio of SH2-domain-containing enzymes that are recruited to the PDGFR.  相似文献   

13.
Glucose is the primary stimulus for insulin secretion by pancreatic beta-cells, and it triggers membrane depolarization and influx of extracellular Ca2+. Cholinergic agonists amplify insulin release by several pathways, including activation of phospholipase C, which hydrolyzes membrane polyphosphoinositides. A novel phospholipid, phosphatidylinositol 3,4,5- trisphosphate [PtdIns(3,4,5)P3], a product of phosphatidylinositol 3-kinase (PI 3-kinase), has recently been found in various cell types. We demonstrate by immunoblotting that PI 3-kinase is present in both cytosolic and membrane fractions of insulin-secreting beta-TC3 cells and in rat islets. The catalytic activity of PI 3-kinase in immunoprecipitates of islets and beta-TC3 cells was measured by the production of radioactive phosphatidylinositol 3-monophosphate from phosphatidylinositol (PtdIns) in the presence of [gamma-32P]ATP. Wortmannin, a fungal metabolite, dose dependently inhibited PI 3-kinase activity of both islets and beta-TC3 cells, with an IC50 of 1 nmol/l and a maximally effective concentration of 100 nmol/l, when it was added directly to the kinase assay. However, if intact islets were incubated with wortmannin and PI 3-kinase subsequently was determined in islet immunoprecipitates, approximately 50% inhibition of PI 3-kinase activity (but no inhibition of glucose- and carbachol-stimulated insulin secretion) from intact islets was obtained at wortmannin concentrations of 100 nmol/l. Wortmannin, at higher concentrations (1 and 10 micromol/l), inhibited glucose- and carbachol-induced insulin secretion of Intact rat islets by 58 and 92%, respectively. Wortmannin had no effect on the basal insulin release from rat islets. A similar dose curve of inhibition of glucose- and carbachol-induced insulin secretion by wortmannin was obtained when beta-TC3 cells were used. Cellular metabolism was, not changed by any wortmannin concentrations tested (0.01-10 micromol/l). Both basal cytosolic [Ca2+]i and carbamyl choline-induced increases of [Ca2]i were unaffected by wortmannin in the presence of 2.5 mmol/l Ca2+, while Ca2+ mobilization from intracellular stores was partially decreased by wortmannin. Together, these data suggest that wortmannin at concentrations that inhibit PI 3-kinase does not affect insulin secretion. PI 3-kinase is unlikely to have a major role in insulin secretion induced by glucose and carbachol.  相似文献   

14.
Pleckstrin homology (PH) domains are recognized in more than 100 different proteins, including mammalian phosphoinositide-specific phospholipase C (PLC) isozymes (isotypes beta, gamma, and delta). These structural motifs are thought to function as tethering devices linking their host proteins to membranes containing phosphoinositides or beta gamma subunits of heterotrimeric GTP binding (G) proteins. Although the PH domains of PLC-delta and PLC-gamma have been studied, the comparable domains of the beta isotypes have not. Here, we have measured the affinities of the isolated PH domains of PLC-beta 1 and -beta 2 (PH-beta 1 and PH-beta 2, respectively) for lipid bilayers and G-beta gamma subunits. Like the intact enzymes, these PH domains bind to membrane surfaces composed of zwitterionic phosphatidylcholine with moderate affinity. Inclusion of the anionic lipid phosphatidylserine or phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and inclusion of G-beta gamma subunits had little affect on their membrane affinity. In contrast, binding of PLC-delta 1 or its PH domain was highly dependent on PI(4,5)P2. We also determined whether these domains laterally associate with G-beta gamma subunits bound to membrane surfaces using fluorescence resonance energy transfer. Affinities for G-beta gamma were in the following order: PH-beta 2 >/= PH-beta 1 > PH-delta 1; the affinities of the native enzyme were as follows: PLC-beta 2 > PLC-delta 1 > PLC-beta 1. Thus, the PH domain of PLC-beta 1 interacts with G-beta gamma in isolation, but not in the context of the native enzyme. By contrast, docking of the PH domain of PLC-beta2 with G-beta gamma is comparable to that of the full-length protein and may play a key role in G-beta gamma recognition.  相似文献   

15.
Insulin stimulates the appearance of anti-tyrosine(P)-immunoprecipitable phosphatidylinositol 3-kinase (PI 3-kinase) activity in adipocytes, predominantly in an intracellular membrane fraction (Kelly, K. L., Ruderman, N. B., and Chen, K. S. (1992) J. Biol. Chem. 267, 3423-3428). Neither the mechanism underlying this activation nor the precise subcellular compartment in which it occurs is known. To address these questions, studies were performed using isolated rat adipocytes and subcellular fractions of these cells. In intact cells, insulin stimulated the rapid appearance of phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate in 32P-labeled adipocytes without changing the labeling of phosphatidylinositol 3-phosphate, phosphatidylinositol 4-phosphate, or phosphatidylinositol 4,5-bisphosphate. This effect was accompanied by the tyrosyl phosphorylation of a 185-kDa protein, tentatively identified as IRS-1, with which PI 3-kinase became associated. The majority of the p85, the regulatory subunit of PI 3-kinase, in untreated adipocytes was present in the cytosol; however, neither the activity of PI 3-kinase nor the total amount of p85 in this fraction was modified in response to insulin. In contrast, insulin increased the association of p85 with IRS-1, the tyrosyl phosphorylation of the IRS-1 associated with p85, and the total activity of PI 3-kinase in the plasma membranes and low density membranes. After insulin treatment, similar amounts of p85 were bound to IRS-1 in the low density and plasma membrane fractions; however, tyrosyl-phosphorylated IRS-1 and PI 3-kinase activity were an order of magnitude greater in the low density membranes. The complex of tyrosyl-phosphorylated IRS-1.p85 that formed in response to insulin was localized to a very low density vesicle subpopulation that could be distinguished from vesicles containing the GLUT-4 glucose transporter and the insulin receptor. These data suggest that the activation of PI 3-kinase by insulin in the adipocyte involves the formation of a complex between IRS-1 and PI 3-kinase in a very low density membrane fraction that is not enriched in GLUT-4 or insulin receptors. They also suggest that PI 3-kinase activation correlates more closely with the extent of tyrosyl phosphorylation of the IRS-1 complexed to PI 3-kinase than it does to the amount of p85 bound to IRS-1.  相似文献   

16.
Phagocytosis requires actin assembly and pseudopod extension, two cellular events that coincide spatially and temporally. The signal transduction events underlying both processes may be distinct. We tested whether phagocytic signaling resembles that of growth factor receptors, which induce actin polymerization via activation of phosphatidylinositol 3-kinase (PI 3-kinase). Fcgamma receptor-mediated phagocytosis was accompanied by a rapid increase in the accumulation of phosphatidylinositol 3,4,5-trisphosphate in vivo, and addition of wortmannin (WM) or LY294002, two inhibitors of PI 3-kinase(s), inhibited phagocytosis but not Fcgamma receptor-directed actin polymerization. However, both compounds prevented maximal pseudopod extension, suggesting that PI 3-kinase inhibition produced a limitation in membrane required for pseudopod extension. Availability of plasma membrane was not limiting for phagocytosis, because blockade of ingestion in the presence of WM was not overcome by reducing the number of particles adhering to macrophages. However, decreasing bead size, and hence the magnitude of pseudopod extension required for particle engulfment, relieved the inhibition of phagocytosis in the presence of WM or LY294002 by up to 80%. The block in phagocytosis of large particles occurred before phagosomal closure, because both compounds inhibited spreading of macrophages on substrate-bound IgG. Macrophage spreading on IgG was accompanied by exocytic insertion of membrane from an intracellular source, as measured by the dye FM1-43. These results indicate that one or more isoforms of PI 3 kinase are required for maximal pseudopod extension but not phagocytosis per se. We suggest that PI 3-kinase is required for coordinating exocytic membrane insertion and pseudopod extension.  相似文献   

17.
Conservation of the Notch signalling pathway in mammalian neurogenesis   总被引:3,自引:0,他引:3  
PURPOSE: To determine whether there is an association between epidermal growth factor (EGF)-induced activation of phosphatidylinositol 3-kinase (PI 3-kinase) and stimulation of wound closure in rabbit corneal epithelial cells. METHODS: Immortalized rabbit corneal epithelial cells were cultured in 24-well plates until they became confluent. Circular wounds were created in confluent cultures by cell denudation and then incubated in the absence and presence of EGF for varying intervals. Wound closure was monitored by staining the cells with Giemsa and quantifying the wound area with SigmaS can computer program. Cell proliferation during wound repair was estimated by measuring the incorporation of [3H]thymidine into nuclear DNA. Changes in PI 3-kinase activity were assessed by measuring the production of phosphatidylinositol 3,4,5-triphosphate [PI(3,4,5)P3] in 32P-labeled cells as well as by immunoprecipitating and assaying PI 3-kinase activity with phosphatidylinositol 4,5-bisphosphate and [gamma-32P]ATP as substrates. The enzyme product, PIP3, was analyzed by a combination of thin-layer and high-pressure liquid chromatography. RESULTS: Addition of 10 ng/ml EGF to the wounded corneal epithelial cells stimulated wound closure in a time-dependent manner, and the wound closed completely within 48 hours. The effect of EGF was dose dependent, and maximal wound closure occurred at 10 ng/ml EGF. As the epithelial cells were undergoing EGF-stimulated wound closure, there was a time-dependent increase in PI 3-kinase activity. The enzyme activity increased maximally at 24 hours and then decreased gradually as the incubation was continued to 48 hours. When the cells were treated with wortmannin, a PI 3-kinase inhibitor, the EGF-stimulated PIP3 formation as well as the wound closure were inhibited significantly. Treatment of the cells with genistein or tyrphostin B42 also decreased both EGF-stimulated PIP3 formation and wound closure in a dose-dependent manner. Concomitant with stimulation of wound repair, the growth factor increased [3H]thymidine incorporation into nuclear DNA, and this effect was inhibited by pretreatment of the cell with wortmannin. CONCLUSIONS: The data suggest a close correlation between EGF-stimulated wound closure and activation of PI 3-kinase in corneal epithelial cells. It can be concluded that PI 3-kinase might be an important component in signal transduction cascade initiated by EGF-receptor interaction, which leads to mitosis and cell proliferation during wound closure in corneal epithelial cells.  相似文献   

18.
The cellular effects of MCP-1 are mediated primarily by binding to CC chemokine receptor-2. We report here that MCP-1 stimulates the formation of the lipid products of phosphatidylinositol (PI) 3-kinase, namely phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate (PI 3,4,5-P3) in THP-1 cells that can be inhibited by pertussis toxin but not wortmannin. MCP-1 also stimulates an increase in the in vitro lipid kinase activity present in immunoprecipitates of the class 1A p85/p110 heterodimeric PI 3-kinase, although the kinetics of activation were much slower than observed for the accumulation of PI 3,4,5-P3. In addition, this in vitro lipid kinase activity was inhibited by wortmannin (IC50 = 4.47 +/- 1.88 nM, n = 4), and comparable concentrations of wortmannin also inhibited MCP-stimulated chemotaxis of THP-1 cells (IC50 = 11.8 +/- 4.2 nM, n = 4), indicating that p85/p110 PI 3-kinase activity is functionally relevant. MCP-1 also induced tyrosine phosphorylation of three proteins in these cells, and a fourth tyrosine-phosphorylated protein co-precipitates with the p85 subunit upon MCP-1 stimulation. In addition, MCP-1 stimulated lipid kinase activity present in immunoprecipitates of a class II PI 3-kinase (PI3K-C2alpha) with kinetics that closely resembled the accumulation of PI 3,4,5-P3. Moreover, this MCP-1-induced increase in PI3K-C2alpha activity was insensitive to wortmannin but was inhibited by pertussis toxin pretreatment. Since this mirrored the effects of these inhibitors on MCP-1-stimulated increases in D-3 phosphatidylinositol lipid accumulation in vivo, these results suggest that activation of PI3K-C2alpha rather than the p85/p110 heterodimer is responsible for mediating the in vivo formation of D-3 phosphatidylinositol lipids. These data demonstrate that MCP-1 stimulates protein tyrosine kinases as well as at least two separate PI 3-kinase isoforms, namely the p85/p110 PI 3-kinase and PI3K-C2alpha. This is the first demonstration that MCP-1 can stimulate PI 3-kinase activation and is also the first indication of an agonist-induced activation of the PI3K-C2alpha enzyme. These two events may play important roles in MCP-1-stimulated signal transduction and biological consequences.  相似文献   

19.
Stimulation of platelet thrombin receptors or protein kinase C causes fibrinogen-dependent aggregation that is a function of integrin alphaIIb beta3 activation. Such platelets rapidly and transiently form phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and a small amount of phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2). After aggregation, a larger amount of PtdIns(3,4)P2 is generated. We report that this latter PtdIns(3,4)P2 arises largely through wortmannin-inhibitable generation of PtdIns3P and then phosphorylation by PtdIns3P 4-kinase (PtdIns3P 4-K), a novel pathway apparently contingent upon the activation of the Ca2+-dependent protease calpain. Elevation of cytosolic Ca2+ by ionophore, without integrin/ligand binding, is insufficient to activate the pathway. PtdIns3P 4-K is not the recently described "PIP5KIIalpha." Cytoskeletal activities of phosphatidylinositol 3-kinase and PtdIns3P 4-K increase after aggregation. Prior to aggregation, PtdIns3P 4-K can be regulated negatively by the beta gamma subunit of heterotrimeric GTP-binding protein. After aggregation, PtdIns3P 4-K calpain-dependently loses its susceptibility to Gbeta gamma and is, in addition, activated. Both PtdIns(3,4,5)P3 and PtdIns(3,4)P2 have been shown to stimulate PKBalpha/Akt phosphorylation and activation by phosphoinositide-dependent kinase 1. We find that activation of PKBalpha/Akt in platelets is phosphorylation-dependent and biphasic; the initial phase is PtdIns(3,4,5)P3-dependent and more efficient, whereas the second phase depends upon PtdIns(3,4)P2 generated after aggregation. There is thus potential for both pre- and post-aggregation-dependent signaling by PKBalpha/Akt.  相似文献   

20.
It has been demonstrated that the lipid products of the phosphoinositide 3-kinase (PI3K) can associate with the Src homology 2 (SH2) domains of specific signaling molecules and modify their actions. In the current experiments, phosphatidylinositol 3,4, 5-trisphosphate (PtdIns-3,4,5-P3) was found to bind to the C-terminal SH2 domain of phospholipase Cgamma (PLCgamma) with an apparent Kd of 2.4 microM and to displace the C-terminal SH2 domain from the activated platelet-derived growth factor receptor (PDGFR). To investigate the in vivo relevance of this observation, intracellular inositol trisphosphate (IP3) generation and calcium release were examined in HepG2 cells expressing a series of PDGFR mutants that activate PLCgamma with or without receptor association with PI3K. Coactivation of PLCgamma and PI3K resulted in an approximately 40% increase in both intracellular IP3 generation and intracellular calcium release as compared with selective activation of PLCgamma. Similarly, the addition of wortmannin or LY294002 to cells expressing the wild-type PDGFR inhibited the release of intracellular calcium. Thus, generation of PtdIns-3,4,5-P3 by receptor-associated PI3K causes an increase in IP3 production and intracellular calcium release, potentially via enhanced PtdIns-4, 5-P2 substrate availability due to PtdIns-3,4,5-P3-mediated recruitment of PLCgamma to the lipid bilayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号