首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H   总被引:76,自引:0,他引:76  
The controller designed according to classical or modern control theory will not satisfy the performance requirements when the controlled object in industrial field can not be described by exact mathematical model or the disturbance of the controlled system. In order to make the controlled system stable and having good performance, H∞ control theory was put forward to solve this practical problem. Taking the position of a rolling mill as the controlled object, it was rectified by optimal engineering way. Then, three different plans were put forward according to Bang-Bang control, LQ control and Hcontrol, respectively. The result of the simulation shows that the controller designed according to Hmethod whose robust performance and ability to restrain colors disturbance is satisfactory.  相似文献   

2.
In order to consider the influence of the continuous rotary motor electro-hydraulic servo system parameters change on its performance,the design method of backstepping adaptive controller is put forward.The mathematical model of electro-hydraulic servo system of continuous rotary motor is established,and the whole system is decomposed into several lower order subsystems,and the virtual control signal is designed for each subsystem from the final subsystem with motor angular displacement to the subsystem with system control input voltage. Based on Lyapunov method and the backstepping theory,an adaptive backstepping controller is designed with the changed parameters adaptive law. It is proved that the system reaches the global asymptotic stability,and the system tracking error asymptotically tends to zero. The simulation results show that the backstepping adaptive controller based on the adaptive law of the changed parameters can improve the performance of continuous rotary motor,and the proposed control strategy is feasible.  相似文献   

3.
In this paper, an adaptive sliding mode method was proposed for BTT autopilot of cruise missiles with variable-swept wings. To realize the whole state feedback, the roll angle, normal overloads and angular rates were considered as state variables of the autopilot, and a parametric sliding mode controller was designed via feedback linearization. A novel parametric adaptation law was put forward to estimate the nonlinear timevarying parameter perturbations in real time based on Lyapunov stability theory. A sliding mode boundary layer theory was adopted to sroooth the discontinuity of control variables and eliminate the control chattering. The simulation was presented for the roll angle and overload commands tracking in different configuration schemes. The results indicated that the controlled system has robust dynamic tracking performance in condition of the large-scale aerodynamic parametric variety resulted from variable-swept wings.  相似文献   

4.
Aiming at a class of systems under parameter perturbations and unknown external disturbances, a method of fuzzy robust sliding mode control was proposed. Firstly, an integral sliding mode surface containing state feedback item was designed based on robust H∞ control theory. The robust state feedback control was utilized to substitute for the equivalent control of the traditional sliding mode control. Thus the robustness of systems sliding mode motion was improved even the initial states were unknown. Furthermore, when the upper bound of disturbance was unknown, the switching control logic was difficult to design, and the drawbacks of chattering in sliding mode control should also be considered simultaneously. To solve the above-mentioned problems, the fuzzy nonlinear method was applied to approximate the switching control term. Based on the Lyapunov stability theory, the parameter adaptive law which could guarantee the system stability was devised. The proposed control strategy could reduce the system chattering effectively. And the control input would not switch sharply, which improved the practicality of the sliding mode controller. Finally, simulation was conducted on system with parameter perturbations and unknown external disturbances. The result shows that the proposed method could enhance the approaching motion performance effectively. The chattering phenomenon is weakened, and the system possesses stronger robustness against parameter perturbations and external disturbances.  相似文献   

5.
Based on the ant colony system(ACS)algorithm and fuzzy logic control,a new design method for optimal fuzzy PID controller was proposed.In this method,the ACS algorithm was used to optimize the input/output scaling factors of fuzzy PID controller to generate the optimal fuzzy control rules and optimal real-time control action on a given controlled object.The designed controller,called the Fuzzy-ACS PID controller,was used to control the CIP-I intelligent leg.The simulation experiments demonstrate that this controller has good control performance.Compared with other three optimal PID controllers designed respectively by using the differential evolution algorithm,the real-coded genetic algorithm,and the simulated annealing,it was verified that the Fuzzy-ACS PID controller has better control performance.Furthermore,the simulation results also verify that the proposed ACS algorithm has quick convergence speed,small solution variation,good dynamic convergence behavior,and high computation efficiency in searching for the optimal input/output scaling factors.  相似文献   

6.
A neural network model with a special structure, which is divided into linear and nonlinear parts, was proposed for identification of a nonlinear system. In this model, the nonlinear part of the object is treated as a measured disturbance, and is compensated by a feed forward method; an adaptive pole placement algorithm is used to control the linear part of the object. The simulation results show that the identification efficiency and accuracy are improved when the new controller is applied to sintering finish point control.  相似文献   

7.
There exists a large class of nonlinear systems with uncertainties, such as hydraulic turbine governors, whose robust control problem is hard to solve by means of the existing robust control approaches. For this class of systems, this work presents a dynamic extending H∞ controller via both differential geometry and H∞ theory. Furthermore, based on differential game theory, it has been verified that the proposed control strategy has robustness in the sense that the disturbance can be attenuated effectively because the L2-gain from the disturbance input to the regulation output signal could be reduced to any given level. Thirdly, a robust control strategy for hydraulic turbine governor is designed according to the proposed extending H∞ control method, and has been developed into a real control equipment. Finally the field experiments are carried out which show clearly that the developed control equipment can enhance transient stability of power systems more effectively than the conventional controller.  相似文献   

8.
This paper presented a hybrid control scheme to vibration reduction of flexible spacecraft during rotational maneuver by using variable structure output feedback control (VSOFC) and piezoelectric materials. The control configuration included the attitude controller based on VSOFC method and vibration attenuator designed by constant-gain negative velocity feedback control. The attitude controller consisted of a linear feedback term and a discontinuous feedback term. With the presence of this attitude controller, an additional flexible control system acting on the flexible parts can be designed for vibration control. Compared with conventional proportional-derivative (PD) control, the developed control scheme guarantees not only the stability of the closed-loop system, but also yields better performance and robustness in the presence of parametric uncertainties and external disturbance. Simulation results are presented for the spacecraft model to show the effectiveness of the proposed control techniques.  相似文献   

9.
The problem of designing a non-fragile delay-dependent H∞ state-feedback controller was investigated for a linear time-delay system with uncertainties in state and control input. First, a recently derived integral inequality method and Lyapunov-Krasovskii stability theory were used to derive new delay-dependent bounded real lemmas for a non-fragile state-feedback controller containing additive or multiplicative uncertainties. They ensure that the closed-loop system is internally stable and has a given H∞ disturbance attenuation level. Then, methods of designing a non-fragile H∞ state feedback controller were presented. No parameters need to be tuned and can be easily determined by solving linear matrix inequalities. Finally, the validity of the proposed methods was demonstrated by a numerical example with the asymptotically stable curves of system state and controller output under the initial condition of x(0)=[1 0 -1]^T and h=0.8 time-delay boundary.  相似文献   

10.
The uncertainty influences may result in performance deterioration and instability to the steer by wire(SBW) system. Thus, it must make the control system keep robust stability from uncertainty, and have good robustness. In order to effectively restrain the interference and improve steering stability, this paper presents a μ synthesis robust controller based on SBW system, which considers the effect of model uncertainty and external disturbance on the system dynamics. Taking the ideal yaw rate tracking, interference suppression and excellent robustness as the control objectives, the μ synthesis robust controller is designed using linear fractional transformation theory to deal with the uncertainty. Then, it is testified through time domain and robustness simulation analysis. Simulation results show that the proposed controller can not only ensure robustness and robust stability of the system quite well, but improve handling stability of the vehicle effectively. The results of this study provide certain theoretical basis for the research and application of SBW system.  相似文献   

11.
A new semi-active suspension control strategy through mixed H2/H∞ robust technique was developed due to its flexibility and robustness to model uncertainties.A full car model with seven degrees of freedom was established to demonstrate the effectiveness of the new control approach.Magneto-rheological(MR) dampers were designed,manufactured and characterized as available semi-active actuators in the developed semi-active suspension system.The four independent mixed H2/H∞ controllers were devised in order to perform a distributed semi-active control system in the vehicle by which the response velocity and reliability can be improved significantly.The performance of the proposed new approach was investigated in time and frequency domains.A good balance between vehicle's comfort and road holding was achieved.An effective and practical control strategy for semi-active suspension system was thus obtained.This new approach exhibits some advantages in implementation,performance flexibility and robustness compared to existing methods.  相似文献   

12.
Learning control for gradually varying references in iteration domain was considered in this research, and a composite iterative learning control strategy was proposed to enable a plant to track unknown iteration-dependent trajectories. Specifically, by decoupling the current reference into the desired trajectory of the last trial and a disturbance signal with small magnitude, the learning and feedback parts were designed respectively to ensure fine tracking performance. After some theoretical analysis, the judging condition on whether the composite iterative learning control approach achieves better control results than pure feedback contro! was obtained for varying references. The convergence property of the closed-loop system was rigorously studied and the saturation problem was also addressed in the controller. The designed composite iterative learning control strategy is successfully employed in an atomic force microscope system, with both simulation and experimental results clearly demonstrating its superior performance.  相似文献   

13.
This paper presents a method for solving the attitude control problem of high altitude airship (HAA) with aerodynamic fin and vectored thruster control. The algorithm is based on the synthetic optimization of dynamic performance and energy consumption of airship. Firstly, according to the system overall configuration, the dynamic model of HAA was established and the HAA linearized model of longitudinal plane motion was obtained. Secondly, using the classic PID control theory, the HAA attitude control system was designed. Thirdly, through analyzing the dynamic performance of airship with fin or vectored thruster control, the synthetic performance index function with different weighting functions was determined. By means of optimizing the obtained performance index function, the attitude control of high altitude airship with good dynamic performance and low energy consumption was achieved. Finally, attitude control allocation strategy was designed for the airship station keeping at an altitude of 22 km. The simulation experiment proved the validity of the proposed algorithm.  相似文献   

14.
Regarding to the problems that supercavitating vehicles have special characteristics from traditional underwater vehicles,robust control problem was studied in this paper for the supercavitating vehicles with mismatched uncertainties.The nonlinear dynamic model was improved.For mismatched uncertainties,the robust sliding mode function was proposed based on guaranteed cost theory,and sufficient condition for the existence was given in terms of linear matrix inequality (LMI).Continuous sliding mode controller was designed,with an adaptive technology which was used to estimate the unknown upper bound of mismatched uncertainties.Meanwhile,upper bound of parameter uncertainties was not required.Simulation results demonstrated that the system responds rapidly and has good robust stability.Due to application of guaranteed cost theory,the controlled plant is not only stable but also guarantees an adequate level of performance.Therefore,it provides theoretical references for further study on control problems of supercavitating vehicles.  相似文献   

15.
The disturbance caused by the reaction wheel with a current controller greatly influences the accuracy and stability of the satellite attitude control system. To solve this problem, the idea of speed feedback compensation control reaction wheel is put forward. This paper introduces the comparison on design and performance of two satellite attitude control systems, which are separately based on the current control reaction wheel and the speed feedback compensation control reaction wheel. Analysis shows that the speed feedback compensation con- trol flywheel system may effectively suppress the torque fluctuation. Simulation results indicate that the satellite attitude control system with the speed feedback compensation control flywheel has improved performance.  相似文献   

16.
The design of decentralized robust H∞ state feedback controller for large-scale interconnected systems with value bounded uncertainties existing in the state, control input and interconnected matrices was investigated. Based on the bounded real lemma a sufficient condition for the existence of a decentralized robust H∞ state feedback controller was derived. This condition is expressed as the feasibility problem of a certain nonlinear matrix inequality. The controller, which makes the closed-loop large-scale system robust stable and satisfies the given H∞ performance, is obtained by the offered homotopy iterative linear matrix inequality method. A numerical example is given to demonstrate the effectiveness of the proposed method.  相似文献   

17.
A robustness-tracking control scheme based on combining H∞ robust control and sliding mode control is proposed for a direct drive AC permanent-magnet linear motor servo system to solve the conflict between tracking and robustness of the linear servo system. The sliding mode tracking controller is designed to ensure the system has a fast tracking characteristic to the command, and the H∞ robustness controller suppresses the disturbances well within the close loop( including the load and the end effect force of linear motor etc. ) and effectively minimizes the chattering of sliding mode control which influences the steady state performance of the system. Simulation results show that this control scheme enhances the track-command-ability and the robustness of the linear servo system, and in addition, it has a strong robustness to parameter variations and resistance disturbances.  相似文献   

18.
A fuzzy robust path tracking strategy of an active pelagic trawl system with ship and winch regulation is proposed. First, nonlinear mathematic model of the pelagic trawl system was derived using Lagrange equation and further simplified as a low order model for the convenience of controller design. Then, an active path tracking strategy of pelagic trawl system was investigated to improve the catching efficiency of the target fish near the sea bottom. By means of the active tracking control, the pelagic trawl net can be positioned dynamically to follow a specified trajectory via the coordinated winch and ship regulation. In addition, considering the system nonlinearities, modeling uncertainties and the unknown exogenous disturbance of the trawl system model, a nonlinear robust H2/H~ controller based on Takagi-Sugeno (T-S) fuzzy model was presented, and the simulation comparison with linear robust H2/H∞ controller and PID method was conducted for the validation of the nonlinear fuzzy robust controller. The nonlinear simulation results show that the average tracking error is 0.4 m for the fuzzy robust H2/H∞ control and 125.8 m for the vertical and horizontal displacement, respectively, which is much smaller than linear H2/H∞ controller and the PID controller. The investigation results illustrate that the fuzzy robust controller is effective for the active path tracking control of the pelagic trawl system.  相似文献   

19.
This paper deals with the problem of robust reliable H∞ control for a class of uncertain nonlinear systems with time-varying delays and actuator failures. The uncertainties in the system are norm-bounded and time-varying. Based on Lyapunov methods, a sufficient condition on quadratic stabilization independent of delay is obtained. With the help of LMIs (linear matrix inequalities) approaches, a linear state feedback controller is designed to quadratically stabilize the given systems with a H∞ performance constraint of disturbance attenuation for all admissible uncertainties and all actuator failures occurred within the prespecified subset. A numerical example is given to demonstrate the effect of the proposed design approach.  相似文献   

20.
Hydraulic Stewart platform is characterized by nonlinearity for driving system in essence,severe load coupling among the legs,which bring a great difficulty for controller design and performance improvement.Afore controller research is either low in tracking performance and movement smoothness when it ignores the nonlinearity and dynamics coupling,or complex in algorithm and has the need of acceleration feedback or observer when the dynamics coupling and nonlinearity is included.To solve the dilemma,a new controller,backstepping adaptive control of hydraulic Stewart platform using dynamic surface is put forward based on the complete dynamics including the upper platform dynamics and hydraulic nonlinearity in driving system.Asymptotic stability of the whole system is proved by Lyapunov method.The proposed algorithm is simple by avoiding the use of acceleration.The simulation results indicate that the control algorithm performs better than the normal PID controller in control precision,dynamic response and depression of the cross coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号