首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
研究了B含量分别为0.2%和1.0%(原子分数)两种TiAl合金中TiB2相的生长机制,结果表明G2(Ti-47.5Al-5( Cr,Nb,W,Si)+1.0B%)合金中少量TiB2相是由于成分起伏从液相中生成的初生块状TiB2相,大部分TiB2相是在凝固过程与β相共同耦合生长的次生带状、杆状TiB2相;G1( Ti-47.5Al-5( Cr,Nb,W,Si)+0.2B%)合金中TiB2相是由共晶反应生成的次生带状TiB2相.G2合金全片层组织和网篮组织室温塑性均优于G1合金,网篮组织室温强度与Gt合金相当,而全片层组织室温强度却不如G1合金.在760 ℃/100 MPa/200 h蠕变条件下G2合金全片层组织残余蠕变量和蠕变速率均低于G1合金.  相似文献   

2.
Ic6+Ru合金的物理化学相分析   总被引:1,自引:0,他引:1  
介绍了Ic6+Ru合金析出相的类型及其电化学提取和定量分析方法.该合金在1260℃×10h、氩气冷却状态下的析出相是γ',M6C和M3B2.对该合金的γ'相和M6C相进行了定量测定,并证明钌主要分布在γ和γ'相中,M6C和M3B2相中只有痕量钌存在.  相似文献   

3.
采用电子探针、透射电镜和X射线衍射方法研究了添加微量B元素(0~1%)(质量分数)对Ni-46Ti-4Al合金微观组织的影响,并采用力学压缩试验测试了合金的室温和高温力学性能.结果表明,Ni-46Ti-4Al合金由NiTi基体和(Ti,Al)<,2>Ni两相组成.添加微量B元素(0.02%)可以促使Ni-46Ti-4Al合金中出现TiB<,2>化合物,且与(Ti,Al)<,2>Ni相都在晶界上析出.随着B含量增加,(Ti,Al)<,2>Ni相逐渐减少,TiB<,2>相逐渐增多.这两相的硬度均高于NiTi基体相,是合金中的强化相.添加适量的B可以显著提高Ni-46Ti-4Al合金的室温和高温屈服强度,例如:添加l%B合金的室温屈服强度达到2553 MPa,比Ni-46Ti-4Al合金提高了128%.添加0.02%B和1%B合金在600℃时的屈服强度分别为382和498 MPa,比Ni-46Ti-4Al合金提高了35%和70%.合金屈服强度和两个强化相((Ti,Al)<,2>Ni和TiB<,2>相)的总体积分数成正比.B加入后一方面使Ni-46Ti-4Al合金得到固溶强化,另一方面,还促使生成具有强化作用的TiB<,2>相,这是合金室温和高温屈服强度提高的主要原因.  相似文献   

4.
采用热力学计算与实验相结合的方法,研究了两种高强韧Al-Zn-Mg-Cu合金铸态及均匀化态的显微组织和相构成.铸态A合金主要由Mg(Zn,Al,Cu)2相和少量Al2Cu相组成,而铸态B合金仅含Mg(Zn,Al,Cu)2相.热力学计算显示,A和B两种合金的实际凝固过程介于Lever Rule和Scheil Model两种模拟结果之间,由于合金成分不同而导致的铸态A和B合金中各相含量差异与Scheil Model模拟所得到的各相摩尔分数变化规律基本一致.经常规工业均匀化处理(460℃保温24 h),铸态A和B合金中存在的Mg(Zn,Al,Cu)2或Al2Cu相均能充分回溶,并得到单相α(Al)基体,这与热力学计算所得到的AlZn-Mg-Cu四元系统在7.5%Zn条件下460℃等温相图相符合.  相似文献   

5.
对NdFeB/SmCo_5复合永磁体界面反应可能生成的合金相及其形成能力进行了分析,以控制NdFeB和SmCo_5两硬磁相间的界面反应,有效改善复合磁体的磁性能。利用Miedema理论和几何外推模型,计算了NdFeB/SmCo_5复合体系可能反应生成的系列合金相的形成焓,分析了2∶14∶1和1∶5两硬磁合金相的元素替代规律,得出了NdFeB与SmCo_5间的界面反应热力学规律。结果表明:2∶14∶1和1∶5合金相的形成焓随稀土元素改变而变化,且1∶5合金相的形成焓更负;SmCo_5合金相较Nd2Fe14B合金相更稳定,但是稀土含量为33.3%的SmCo_2合金相的形成焓更负,其形成能力优于SmCo_5合金相;Nd(或Pr)或Fe取代SmCo_5合金相中的Sm或Co后增大了其形成焓,降低了1∶5相的形成能力;然而,Sm或Co取代Nd_2Fe_(14)B合金相中的Nd或Fe反而使2∶14∶1相的形成焓更负,增强了其形成能力。Nd_2Fe_(14)B合金相转变成Nd_2Co_(14)B合金相的热力学驱动力要显著高于其转变成Sm_2Fe_(14)B合金相的,使得Nd_2Fe_(14)B合金相优先发生界面反应形成Nd_2(Fe,Co)_(14)B合金相,而SmCo_5合金相则倾向于形成更稳定的SmCo_2合金相。  相似文献   

6.
利用非自耗真空电弧熔炼炉获得了Ti-45Al-xFe合金钮扣锭,并利用光学显微镜(OM)、扫描电镜(SEM)和洛氏硬度仪研究了Fe含量的变化对Ti-45Al-xFe合金铸态组织及硬度的影响规律。结果表明:随着Fe含量的增加,Ti-45Al-xFe合金的显微组织演化过程依次经历了如下阶段:具有四重对称的树枝晶→具有四重对称的树枝晶+枝晶间较小的γ相+少量的B2相→具有六重对称的树枝晶+板条状的γ相+大量的B2相,而且在Ti-45Al-xFe合金中B2相的析出量也随之增加。另外,随着Fe含量的增加,Ti-45Al-xFe合金中的凝固初生相由β相向α相演化。通过对Ti-45Al-xFe合金进行硬度试验发现,其硬度拟合曲线呈现先降低后增加的变化趋势。这主要是由于Ti-45Al-xFe合金中B2相的大量析出及其显微组织形态的变化所致,当Fe含量大于5%(原子分数)时,Ti-45Al-xFe合金的显微组织中的B2相的形态发生了明显的变化,并且该B2相的内部呈现蜂窝形状。因此,由于该B2相的组织形态导致了Ti-45Al-xFe合金的硬度值增加。  相似文献   

7.
利用Gleeble-1500D热模拟试验机研究了Ti-44Al、Ti-44Al-6Nb和Ti-44Al-6Nb-1Cr-2V合金在1 100~1 250℃和0. 01 s-1条件下的热变形行为。研究结果表明,添加β相稳定元素可降低TiAl合金的流变应力,在相同变形条件下Ti-44Al-6Nb-1Cr-2V合金具有更低的峰值应力。高温变形时,TiAl合金主要发生片层弯曲和拉长协调变形,以及片层团晶界处动态再结晶和B2相协调变形。动态再结晶程度随着变形温度的升高以及β相稳定元素含量的提高而增加,B2相协调变形和促进动态再结晶是TiAl合金的主要软化方式。添加β相稳定元素和控制B2相含量能有效改善TiAl合金热加工性能。  相似文献   

8.
《稀土》2016,(1)
以N35TH烧结态NdFeB永磁合金为实验材料,进行时效态处理,系统分析了合金微观结构对磁性的影响。通过场发射扫描电镜观察了合金形貌,结果表明,影响NdFeB磁性的内在因素包括在主晶相Nd2Fe14B晶界处富稀土相的形态和分布、主晶相晶界的平直规整和Nd2Fe14B主晶相的数量增加,而且NdFeB永磁合金中具有001强织构和001取向的主晶相Nd2Fe14B晶粒明显增多,也是导致磁性改善的重要原因。  相似文献   

9.
系统研究了航空涡轮盘GH4586A和GH4586B合金在700~800℃长期时效时,合金微观组织的演变过程.重点研究了时效过程中沉淀强化相与奥氏体基体的稳定性,尤其是拓扑密排相(TCP相)析出行为及其与时效温度和时效时间的关系.研究表明,长期时效过程中GH4586B合金未见TCP相析出,但γ相随时效时间的延长快速粗化,导致合金室温与高温强度显著衰减.GH4586A合金的γ相长大缓慢,从而保持了稳定的抗拉强度,但在750℃、2000h以上时效时出现了μ相析出在晶界与晶内M6C二次碳化物表面形核并以半共格形式向奥氏体基体内生长,致使合金的塑性有所下降.  相似文献   

10.
系统研究了一种定向凝固镍基铸造高温合金的物理化学相分析方法。对3种热处理制度下的试验合金中各析出相的结构、化学组成和含量及γ′相+微量相的粒度分布进行了测定,揭示了该合金中析出相在不同状态下的变化规律。该合金的析出相为:γ′,(Ti,Nb)C,HfC,M23C6,W3.2Cr1.8B3,WB,M6C(痕)等,没发现μ和M3B2相析出。粒度分布结果表明,在900℃时效3 000 h,γ′相略有长大。  相似文献   

11.
12.
13.
14.
A numerical formulation of solidification model which can predict the microsegregation and microstructural features for multicomponent alloys is presented. The model incorporates the kinetic features during solidification such as solute back diffusion, dendrite tip undercooling, and secondary arm coarsening. The model is dynamically linked to thermodynamic library for accurate input of thermodynamic data. The modeling results are tested against the directional solidification experiments for Mg-Al-Zn alloys. The experiments were conducted in the cooling rate range of 0.13 to 2.33 K/s and microstructural features such as secondary arm spacing, primary dendrite arm spacing, second phase fraction, and microsegregation were compared with the modeling results. Based on the model and the experimental data, a solidification map was built in order to provide guidelines for as-cast microstructural features of Mg-Al-Zn alloys in a wide range of solidification conditions.  相似文献   

15.
16.
Calculating microstructures for technical materials is an ambitious task which not only implies different length scales but also the complex thermodynamic properties of multicomponent and multiphase alloys. We report some of the recent progress in simulating microstructure evolution in multicomponent steels using the multiphase‐field software MICRESS®. Several applications are reviewed in order to demonstrate the current status of applied phase‐field techniques.  相似文献   

17.
One important parameter for the processing of materials by semi‐solid forming is the actual distribution of the solid and liquid phases in the semi‐solid range. This parameter defines the process stability for the forming step. Therefore it is necessary to obtain information about the materials behaviour in the semi‐solid state for different materials grades. This kind of information can be obtained by experimental studies in the interesting temperature range or by calculations with simulation programs using thermodynamic data validated by experiments. This work shows the results of experimental studies and thermodynamic calculations of the solidification and heat treatment behaviour of the aluminium alloy A319 and the steel X210CrW12. The experimental studies of solidification and heat treatment of these alloys were carried out using a differential thermal analysis system (DTA). The theoretical fraction of liquid content was calculated from the DTA signal by using a software module called Corrdsc. The experimental data obtained were used to validate the thermodynamic simulations of the solidification of semi‐solid alloys. The simulations of the solidification process were carried out for equilibrium conditions, with the Scheil‐Gulliver model as well as with diffusion calculations. The equilibrium and Scheil‐Gulliver calculations were performed by the program Thermo‐Calc, and the diffusion by the program DICTRA. The required thermodynamic and mobility data for multicomponent systems were taken from the data bases COST 507 light alloys, TCFE2000 Steel/Alloys and MOB2 mobility and from newly added data. The comparison of calculated phase transformations and fractions of liquid content with experimental data revealed a good agreement.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号