首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fault tolerance is a critical attribute in automotive electrical and propulsion systems. In this paper, a control scheme is presented that allows an induction motor drive system to operate in the event of multiple sensor failures. Automatic diagnosis of sensor fault and recovery is performed and used to reconfigure the drive system controls to achieve the best performance in lieu of component degradation. This approach couples a new digital delta-hysteresis regulation scheme with a model reference adaptive system scheme in order to provide fault tolerance for both phase-current and rotor position (speed) sensors. Simulation and experimental results are provided to show the effectiveness of the proposed scheme.  相似文献   

2.
Precise control of stator current is essential to high performance field orientation controlled induction motor drives. Any current error degrades the performance of the drive in the same way as incorrect tuning of field orientation. Previous research has shown that accurate current control can be achieved with intelligent but complex control algorithms. This paper presents a new current control scheme which can achieve high accuracy and fast dynamic response but which is very simple for microprocessor implementation. The scheme was derived using the discrete state space modelling of the induction motor. The control law does not require knowledge of rotor flux and was independent of the field orientation control tuning. Good static and dynamic performances were obtained in both the simulation and experimental verifications. The results also show that the leakage inductance model error might cause a current ripple. However, this parameter can be tuned to its correct value easily by inspecting the current response.  相似文献   

3.
4.
The decoupling control of induction machines is investigated. Three different schemes for decoupling-control methods based on stator flux, airgap flux, and rotor flux field regulation are developed. The control dynamics of each scheme are outlined and studied. Simulation results are presented to verify that these schemes provide decoupling control with excellent dynamic behavior. The transient and steady-state relationships between slip frequency and torque, under constant stator flux, airgap flux, and rotor flux operations, are simulated and compared. The sensitivity characteristics of the three methods of flux-control, machine fed by impressed currents and voltages, are also compared and studied. A prototype torque-drive system is implemented to demonstrate the decoupling control of a squirrel-cage induction machine  相似文献   

5.
A novel control approach for a robust induction motor drive system with a voltage source inverter has been developed. In the scheme, the induction motor and its corresponding inverter gating signal are controlled using the decoupling control theory. In addition, an adaptive optimal speed regulator employing the model reference adaptive control (MRAC) is incorporated into the drive system to compensate for unfavorable errors. The principles and special features of the control scheme are discussed, and the configuration of the drive system is presented. Comparison is made between conventional proportional plus integral (PI) control and the MRAC. Test results show the robustness and superior dynamic performance of the proposed control system  相似文献   

6.
Current control in voltage-source inverters with random pulsewidth modulation (RPWM) is investigated. The random modulation is introduced to alleviate the undesirable acoustic, vibration, and EMI effects in inverter-fed AC drive systems. A novel RPWM digital technique with dithering of the switching frequency and compensation of the processing time is described. Design of the current control loop is discussed. Results of investigation of an experimental drive system are presented, proving the feasibility of the proposed solutions  相似文献   

7.
In this paper, the adaptive speed control of induction motor drives using neural networks is presented. To obtain good tracking and regulating control characteristics, a digital two-degree-of-freedom (2DOF) controller is adopted and a design procedure is developed for systematically finding its parameters according to prescribed specifications. The parameters of the controller corresponding to various drive parameter sets are found off-line and used as the training patterns to estimate the connection weights of neural networks, Under normal operation, the true drive parameters are real-time identified and they are converted into the controller parameters through multilayer forward computation by neural networks. The parameters of the 2DOF controller can be adapted to match the desired specifications under various operating conditions  相似文献   

8.
The design and implementation of a multiprocessor-based fully digital control architecture for permanent-magnet synchronous motor drives and an approach for designing advanced AC servo drives using currently available high-performance microprocessors are presented. The design of the architecture involves formulation of control algorithms for a current-regulated pulsewidth-modulated inverter and advanced vector-control strategies for speed and position loop. Under the vector-control framework, some recently developed robustness control results are applied to the design of speed-loop controllers. The implementation of the architecture integrates the control of current, speed, and position loop using the multiprocessor-based controller. Experimental case studies that correlate simulation and measurement results are provided. Experiments were conducted to compare the controller performance, including step speed and position responses, closed-loop frequency responses, the effect of field-weakening control, and disturbance-rejection performance. The experimental results validate the theoretical development  相似文献   

9.
Five-phase induction motor drives with DSP-based control system   总被引:5,自引:0,他引:5  
This paper introduces two kinds of control schemes: vector control and direct torque control (DTC). These control schemes can be extensively applied to the operation of a five-phase induction motor using a fully digital implementation. Vector control of the five-phase induction motor not only achieves high drive performance, but also generates the desired nearly rectangular current waveforms and flux profile in the air-gap resulting in an improvement in air gap flux density and an increase of 10% in output torque. The DTC method has additional advantages when applied to multiphase, in this case a five-phase, induction motor. The five-phase inverter provides 32 space voltage vectors in comparison to 8 space voltage vectors provided by the three-phase inverter. Therefore, a more elaborate flux and torque control algorithm for the five-phase induction motor can be employed. Direct torque control of the five-phase induction motor reduces the amplitude of the ripples of both the stator flux and the torque, resulting in a more precise flux and torque control. A 32-b floating-point TMS320C32 digital signal processor (DSP) enables these two sophisticated control techniques to be conveniently implemented with high control precision. Experimental results show that an ideal control capability is obtained for both control methods when applied to the five-phase induction motor and further validates theoretical analysis  相似文献   

10.
This paper deals with the design and experimental realization of a model reference adaptive control (MRAC) system for the speed control of indirect field-oriented (IFO) induction motor drives based on using fuzzy laws for the adaptive process and a neuro-fuzzy procedure to optimize the fuzzy rules. Variation of the rotor time constant is also accounted for by performing a fuzzy fusion of three simple compensation strategies. A performance comparison between the new controller and a conventional MRAC control scheme is carried out by extensive simulations confirming the superiority of the proposed fuzzy adaptive regulator. A prototype based on an induction motor drive has been assembled and used to practically verify the features of the proposed control strategy  相似文献   

11.
A speed controller considering the effects of parameter variations and external disturbance for indirect field-oriented induction motor drives is proposed in this paper. First a microprocessor-based indirect field-oriented induction motor drive is implemented and its dynamic model at nominal case is estimated. Based on the estimated model, an integral plus proportional (IP) controller is quantitatively designed to match the prescribed speed tracking specifications. Then a dead-time compensator and a simple robust controller are designed and augmented to reduce the effects of parameter variations and external disturbances. The desired speed tracking control performance of the drive can be preserved under wide operating range, and good speed load regulating performance can also be obtained. Theoretic basis and implementation of the proposed controller are detailedly described. Some simulated and experimental results are provided to demonstrate the effectiveness of the proposed controller  相似文献   

12.
A new hybrid fuzzy controller for direct torque control (DTC) induction motor drives is presented in this paper. The newly developed hybrid fuzzy control law consists of proportional-integral (PI) control at steady state, PI-type fuzzy logic control at transient state, and a simple switching mechanism between steady and transient states, to achieve satisfied performance under steady and transient conditions. The features of the presented new hybrid fuzzy controller are highlighted by comparing the performance of various control approaches, including PI control, PI-type fuzzy logic control (FLC), proportional-derivative (PD) type FLC, and combination of PD-type FLC and I control, for DTC-based induction motor drives. The pros and cons of these controllers are demonstrated by intensive experimental results. It is shown that the presented induction motor drive is with fast tracking capability, less steady state error, and robust to load disturbance while not resorting to complicated control method or adaptive tuning mechanism. Experimental results derived from a test system are presented confirming the above-mentioned claims.  相似文献   

13.
This paper describes a PWM control method to balance two unit inverter currents and to reduce the distortion of motor currents in a multiple GTO inverter for large capacity AC variable-speed drive systems. For an 11 kW induction motor driven by a 15 kVA multiple inverter, the imbalance current can be reduced to less than 5% of the rated motor current, and the motor current waveform can be made very close to sinusoidal. The GTO switching frequency in the multiple inverter can be lowered to one-quarter of that in the single inverter. In a 2750 kVA GTO inverter drive system which was developed based on the 15 kVA multiple inverter, excellent performance is obtained including unity power factor operation at an AC power source, smooth 4-quadrant operation, and quick speed response of 85 rad/s. The quick response is realized by field-oriented control with decoupling control between torque and exciting currents, and direct control of three-phase AC currents. In the future, the multiple GTO inverter is expected to be applied to rolling mill drives instead of cycloconverters  相似文献   

14.
In this paper, a variable structure current controller based on a space voltage vector PWM scheme is presented for induction motor drives. In this current controller design, only the current sensors are employed and we attempt to force the stator currents to be exactly equal to the reference currents rapidly. This proposed current controller, which is based on the space voltage vector PWM drive, exhibits several advantages in terms of reduced switching frequency, robustness to parameter variations, elimination of current/torque ripple, and improved performance in induction motor drive. It shows that the current control laws can be demonstrated in theory. Finally, simulation and experimentation results verify the proposed control scheme  相似文献   

15.
An original speed control for centrifugal pump and fan drives with squirrel-cage induction motors that seeks the maximum energy saving is proposed. The strategy is based on minimizing the motor and converter losses at the steady state and minimizing the transient time that the motor employs in passing from one steady stage to another. The shortest transient time is achieved by applying the Pontriagin's maximum principle taking into account the parabolic load torque-speed dependence of these types of drives. Short-time transients, which take the motor from one point of maximum efficiency to another, contribute to reduce losses and to extend the application of the energy-saving concept to the drives with frequent changes of load torque and speed.  相似文献   

16.
A PWM pulse pattern optimization method using pulse frequency modulation (PFM) is described. In conventional PWMs the pulse frequency is kept constant. In the proposed PFM, however, the pulse frequency is adjusted. The PFM technique is intended to not only reduce the magnetic acoustic noises of driven motors but also to improve the performance of sinusoidal inverters. The PWM pulse patterns are basically controlled so that the time-integral function of the voltage vectors in the space vector notation may draw a circular locus. In addition to this, the pulse frequency, of PWM is also controlled so that the performance index (PI), which represents the degree of achieved objectives, may be minimized. Two PIs, one for minimizing the distortion of output currents and the other for minimizing the torque pulsation of driven motors, are employed. The method is implemented using a single-chip microprocessor, and the experimental results demonstrate its validity  相似文献   

17.
A deadbeat current controller for field oriented induction motor drives   总被引:2,自引:0,他引:2  
Accurate stator current control is essential in high performance field orientation-controlled induction motor drives. Any current error degrades the drive's performance in the same way as an incorrectly tuned field orientation. This paper presents an efficient current control scheme that can achieve high accuracy and a fast dynamic response. This scheme uses voltage decoupling and deadbeat control loops. The decoupling controller provides the voltage needed to oppose the motor's back EMF. The deadbeat controller reduces the current error as fast as possible and stabilizes the system. The control law does not require knowledge of the rotor flux and is independent of the field orientation control tuning. Good static and dynamic performances were obtained in both the simulation and experimental verifications. Because the motor leakage inductance and resistance information were required for this control method, the influence of the estimation errors for these parameters was also investigated. The results show that the leakage inductance model error might cause a current ripple. However, this parameter can be tuned to its correct value easily by inspecting the current response.  相似文献   

18.
In this paper, an indirect field-oriented control (FOC) induction motor (IM) drive with instantaneous current and torque control is presented. This proposed control scheme employs hysteresis current and torque controllers to regulate the stator currents. The torque controller is proposed to serve the current controller so that full advantage of the zero voltage vector can be taken to reduce the switching frequency of the inverter. As a result, the actual stator currents can follow the current references as closely as possible, and the current ripple and torque ripple can be greatly decreased compared with the conventional adaptive pulsewidth modulation control method. To verify the feasibility of the proposed scheme, computer simulations and experiment results demonstrate that the proposed method can obtain a high-performance IM drive system.  相似文献   

19.
This paper presents the analysis and design of direct torque control (DTC) induction motor drives with self-commissioning. Neither motor parameters nor controller parameters are known a priori. The self-commissioning process consists of the calculation of motor parameters, including stator resistor, inertia and friction coefficient, as well as the design of the controller. The effects of several factors, including test conditions for deriving motor mechanical parameters and natural frequency for controller design, on the performance of speed response are investigated using Taguchi's method which is widely used in quality engineering to significantly reduce the number of experiments. Therefore, the presented drive system cannot only provide self-commissioning but also dramatically improve the performance of speed response, which is evaluated using the performance index of root-mean-squared error (RMSE) of speed. Experimental results derived from a PC-based experimental system are presented to fully support the theoretical development and analysis  相似文献   

20.
The implementation of a direct method of field orientation that requires little knowledge of machine parameters and uses only readily measurable quantities is discussed. The system uses tapped stator windings to measure the air-gap flux. The signals from the tapped windings are also used in a flux-regulation loop. A speed controller is implemented using the ripples created in the tapped windings by the motion of the rotor slots through the flux for speed information  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号