首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Viscosity of Gaseous R404A, R407C, R410A, and R507   总被引:1,自引:0,他引:1  
This paper presents new measurements of the viscosity of gaseous R404A (52 wt% R143a, 44 wt% R125, 4 wt% R134a), R407C (23 wt% R32, 25 wt% R125, 52 wt% R143a), R410A (50 wt% R32, 50 wt% R125), and R507 (50 wt% R143a, 50 wt% R125). These mixtures are recommended as substitutes for the refrigerants R22, R502, and R13B1. Measurements were carried out in an oscillating-disk viscometer. The obtained values of the viscosity are relative to the viscosity of nitrogen. The experiments were performed at atmospheric pressure over the temperature range 297 to 403 K. and near the saturation line up to pressures of 0.6 P crit. The estimated uncertainty of the reported viscosities are ±0.5% for the viscosities at atmospheric pressure and ± 1% along the saturation line, being limited by the accuracy of the available vapor pressure and density data. The experimental viscosities at atmospheric pressure are employed to determine the intermolecular potential parameters, and , which provide the optimum representation of the data with the aid of the extended law of corresponding states developed by Kestin et al. A comparison of the experimental viscosity data with the values calculated by REFPROP, both at atmospheric pressure and along the saturation line, is presented.  相似文献   

2.
The viscosity of R32 and R125 at saturation   总被引:3,自引:0,他引:3  
This paper reports new measurements of the viscosity of R32 and R125, in both the liquid and the vapor phase, over the temperature range 220 to 343 K near the saturation line. The measurements in both liquid and vapor phases have been carried out with a vibrating-wire viscometer calibrated with respect to standard reference values of viscosity. It is estimated that the uncertainty of the present viscosity data is one of 0.5–1%, being limited partly by the accuracy of the available density data. The experimental data have been represented by polynomial functions of temperature for the purposes of interpolation.  相似文献   

3.
This paper reports new, absolute measurements of the thermal conductivity of the liquid refrigerants R22, R123, and R134a in the temperature range 250–340 K at pressures from saturation up to 30 MPa. The measurements, performed in a transient hot-wire instrument employing two anodized tantalum wires as the heat source, have an estimated uncertainty of ±0.5%. A recently developed semiempirical scheme is employed to correlate successfully the thermal conductivity and the viscosity of these refrigerants, as a function of their density.  相似文献   

4.
The first measurements of the thermal conductivity of two refrigerants which are candidates for the replacement of those fluids currently in use are reported. Specifically, results are given for the thermal conductivity of R32 and R125 in the liquid phase along the saturation line. The measurements, which have been made by the transient hot-wire technique, extend over the temperature range from 205 to 303 K for R32 and from 225 to 306 K for R125; the results have an estimated uncertainty of ±1.0%.  相似文献   

5.
New viscosity measurements for the gaseous and supercritical state of the halogenated hydrocarbons R12, R113, and R114 and binary mixtures of R12 + R114 of different compositions are presented. The measurements were carried out at superheated and supercritical temperatures from 30 to 200° C and in the pressure range from 1 to 80 bar. Viscosity was measured with an oscillating-disk viscometer and the data obtained are relative to the viscosity of nitrogen. The estimated accuracy of the measured results is ±0.6%. The results obtained show that, at subcritical temperatures, the pressure effect on viscosity is negative. This anomalous behaviour is investigated in detail in this work. At atmospheric pressure the viscosity of gas mixtures is almost a linear function of their composition. At high pressure, the residual viscosities - 0 of both the pure components and the mixtures were used to follow a single relationship versus the residual reduced density r0.Paper presented at the Tenth Symposium on Thermophysical Properties, June 20–23, 1988, Gaithersburg, Maryland, U.S.A.  相似文献   

6.
This paper reports new measurements of the liquid viscosity of R11, R12, R1416, and R152a in the temperature range 270 to 340 K and pressures up to 20 MPa. The measurements have been carried out in a vibrating-wire instrument calibrated with respect to the standard reference value of the viscosity of water. It is estimated that the uncertainty of the present viscosity data is one of 0.5%. The experimental data have been represented by polynomial functions of temperature and pressure for the purposes of interpolation. A recently developed semiempirical scheme, based on considerations of hard-sphere theory, is employed to correlate successfully the viscosity and the thermal conductivity of these refrigerants as a function of their density.  相似文献   

7.
本文针对含HFOs类混合制冷剂黏度开展实验和模型研究。采用振动弦法黏度计对R32纯质和R32/R1234yf混合制冷剂黏度进行了实验测量,测量的温度范围分别为263~350 K、263~360 K,压力最高均为30 MPa,实验系统黏度测量的不确定度为2%。本文共获得了177组实验数据,利用得到的实验数据,基于硬球模型分别拟合了R32纯质和R32/R1234yf混合制冷剂黏度方程。R32纯质黏度实验数据与方程的平均绝对偏差为0.28%,最大绝对偏差为0.92%;R32/R1234yf混合工质黏度实验数据与方程的平均绝对偏差为0.69%,最大绝对偏差为2.09%。由此可见,实验数据和黏度模型吻合较好,为R32和R32/R1234yf混合制冷剂的应用研究提供了重要参考依据。  相似文献   

8.
Earlier reported values of the viscosity coefficient of the refrigerant R152a (1,1-difluoroethane) have been recalculated with an improved value for the mechanical damping of the vibrating wire viscometer. The measurements were taken along the saturation line both in the saturated liquid and in the saturated vapor every 10 K from 243 up to 393 K by means of a vibrating wire viscometer The damping of the vibration of the wire is a measure for the viscosity provided that the mechanical damping is subtracted. The latter is usually measured in vacuum. It turns out that the damping value measured in this way depends on the vacuum pressure and on the way the wire has been handled before. It appeared that the damping applied previously, measured after 6 days of pumping, is too small, resulting in values of the viscosity coefficient which are too large. The effect on the data for the saturated-liquid viscosity is small, but the new saturated-vapor viscosity data agree much better with the unsaturated-vapor data reported by Takahashi et al.  相似文献   

9.
This paper reports measurements of the thermal conductivity of refrigerants R32, R124, R125, and R141b in the liquid phase. The measurements, covering a temperature range from 253 to 334 K and pressure up to 20 MPa, have been performed in a transient hotwire instrument employing two anodized tantalum wires. The uncertainty of the present thermal-conductivity data is estimated to be ±0.5%. The experimental data have been represented by polynomial functions of temperature and pressure for the purposes of interpolation. A comparison with other recent measurements is also included.  相似文献   

10.
New, absolute values of the thermal conductivity of two refrigerants, R134a and R141b, in the liquid phase at saturation are reported. The measurements have been performed in transient hot-wire instruments making use of electrically insulated tantalum wires within the temperature range 240–307 K. The results are estimated to have an accuracy of ±1%.  相似文献   

11.
Measurements of the viscosity of refrigerants R124, R125, R134a, and R152a in the vapor phase are presented. The measurements, performed in a new vibrating-wire instrument, cover a temperature range from 273 to 333 K from about atmospheric pressure up to below the saturation pressure. The uncertainty of the reported values is estimated to be better than ±1%. Comparison with measurements of other investigators reveals a lack of reliable data in the vapor region for these compounds. Paper presented at the Fourth Asian Thermophysical Properties Conference., September 5–8, 1995, Tokyo, Japan.  相似文献   

12.
Measurements of the thermal conductivity of refrigerants R124, R125, and R134a in the vapor phase are presented. The measurements, performed in a newly developed transient hot-wire instrument, cover a temperature range from 273 to 333 K and a pressure range from about atmospheric up to below the saturation pressure. A finite-elements program developed allowed the reexamination of the major corrections employed in the analysis of the results. The uncertainty of the reported values is estimated to be better than ±1%. Comparisons with measurements of other investigators along the saturation line show a lack of reliable thermal conductivity data in the vapor phase for these compounds. Invited paper presented at the Fourth Asian Thermophysical Properties Conference, September 5–8, 1995, Tokyo, Japan.  相似文献   

13.
This paper presents an experimental study on various thermophysical properties of a new fluoroalkane, 1,1,1,3,3-pentafluorobutane (R365mfc). The thermal conductivity of R365mfc was measured in the liquid phase near saturation conditions at temperatures between 263 and 333 K using a parallel plate instrument with an uncertainty of less than ±5%. For the measurement of the saturated liquid density between 273 and 353 K, a vibrating tube instrument was used. The uncertainty of the density measurements is less than ±0.1%. In addition, experimental data have been obtained for R365mfc under saturation conditions over a wide temperature range from about 253 to 460 K using light scattering techniques. Light scattering from the bulk fluid has been applied for measuring both the thermal diffusivity and the sound speed in the liquid and vapor phases. Light scattering by surface waves on a horizontal liquid–vapor interface has been used for the simultaneous determination of the surface tension and kinematic viscosity of the liquid phase. With the light scattering techniques, uncertainties of less than ±1.0, ±0.5, ±1.0, and ±1.2% have been achieved for the thermal diffusivity, the sound speed, the kinematic viscosity, and the surface tension, respectively.  相似文献   

14.
This paper reports new measurements of the liquid viscosity of R134a and R32 in the temperature range 270 to 340 K and pressures up to 20 MPa. The measurements have been carried out in a vibrating-wire instrument calibrated with respect to the standard reference value of the viscosity of water. It is estimated that the uncertainty of the present viscosity data is one of 0.5%. The experimental data have been represented by polynomial functions of temperature and pressure for the purposes of interpolation.  相似文献   

15.
The paper reports new measurements of the viscosity of liquid R134a over the temperature range 235 to 343 K and pressures up to 50 MPa. The measurements have been carried out in a vibrating-wire viscometer calibrated with respect to the viscosity of several liquid hydrocarbons. It is estimated that the uncertainty in the viscosity data reported is ±0.6%. The data therefore have a lower uncertainty than that of earlier measurements of the viscosity of this environmentally acceptable regrigerant. The viscosity data have been represented as a function of density by means of a formulation based upon the rigid, hard-sphere theory of dense fluids with a maximum deviation of ±0.3%. This representation allows the present body of experimental data to be extended to regions of thermodynamic state not covered by the measurements.  相似文献   

16.
The saturated liquid viscosity of ammonia (NH3) and of the hydrofluorocarbons, difluoromethane (CH2F2, R32) and 1,1,1,2-tetrafluoroethane (CF3–CH2F, R134a), was measured in a sealed gravitational viscometer with a straight vertical capillary. The combined temperature range was from 250 to 350 K. The estimated uncertainty of the ammonia measurements is ±3.3 and ±2 to 2.4% for the hydrofluorocarbons with a coverage factor of two. The results are compared with literature data which have been measured with capillary viscometers of different design. Agreement within the combined experimental uncertainty is achieved when some of the literature data sets are corrected for the vapor buoyancy effect and when a revised radial acceleration correction is applied to data which were obtained in viscometers with coiled capillaries. An improved correction for the radial acceleration is proposed. It is necessary to extend inter-national viscometry standards to sealed gravitational capillary instruments because the apparent inconsistencies between refrigerant viscosity data from different laboratories cannot be explained by contaminated samples.  相似文献   

17.
Light scattering by thermally excited capillary waves on liquid surfaces or interfaces can be used for the investigation of viscoelastic properties of fluids. In this work, we carried out the simultaneous determination of the surface tension and the liquid kinematic viscosity of some alternative refrigerants by surface light scattering (SLS) on a gas–liquid interface. The experiments are based on a heterodyne detection scheme and signal analysis by photon correlation spectroscopy (PCS). R23 (trifluoromethane), R32 (difluoromethane), R125 (pentafluoroethane), R143a (1,1,1-trifluoroethane), R134a (1,1,1,2-tetrafluoroethane), R152a (1,1-difluoroethane), and R123 (2,2-dichloro-1,1,1-trifluoroethane) were investigated under saturation conditions over a wide temperature range, from 233 K up to the critical point. It is estimated that the uncertainty of the present surface tension data for the whole temperature range is less than ±0.2 mN·m–1. For temperatures up to about 0.95T c, the kinematic viscosity of the liquid phase could be obtained with an absolute accuracy of better than 2%. For the highest temperatures studied in this work, measurements for the kinematic viscosity exhibit a maximum uncertainty of about ±4%. Viscosity and surface tension data are represented by a polynomial function of temperature and by a van der Waals-type surface tension equation, respectively. The results are discussed in detail with comparison to literature data.  相似文献   

18.
Thermal-conductivity measurements are reported for the new refrigerants R134a, R152a und R123. Transient hot-wire experiments were performed which cover both the liquid and vapor states at temperatures and pressures ranging from?=?20°C to 90°C and fromp=0.1 bar to 60 bar respectively. The results are correlated with density and temperature. In addition temperature dependent correlations are presented for (i) saturated liquid, (ii) saturated vapor, (iii) ideal gas (which equals approximately vapor state at ambient pressure). Finally the results are compared with data from the literature and also with the thermal conductivities of R12 and R11.  相似文献   

19.
This paper presents new measurements of the viscosity of gaseous R407C (23 mass% HFC-32, 25 mass% HFC-125, 52 mass% HFC-143a) and R407E (25 mass% HFC-32, 15 mass% HFC-125, 60 mass% HFC-143a). The measurements were carried out with an oscillating-disk viscometer of the Maxwell type at temperatures from 298.15 to 423.15 K. The densities of these two fluid mixtures were calculated with the equation-of-state model in REFPROP. The viscosity at normal pressures was analyzed with the extended law of corresponding states developed by Kestin et al., and the scaling parameters needed in the analysis were obtained from our previous studies for the viscosity of the binary mixtures consisting of HFC-32, HFC-125, and HFC-134a. The modified Enskog theory developed by Vesovic and Wakeham (V-W method) was applied to predict the viscosity for the ternary gaseous HFC mixtures under pressure. As for the calculation of pseudo-radial distribution functions in mixtures, a method based on the equation of state for hard-sphere fluid mixtures proposed by Carnahan-Starling was applied. It was found that the V-W method can predict the viscosity of R407C and R407E without any additional parameters for the ternary mixture.  相似文献   

20.
Thermophysical properties of refrigerant R134a   总被引:1,自引:0,他引:1  
Experimental results of measurements of the thermodynamic and transport properties of refrigerant R134a are presented for the temperature range 240–400 K and pressures up to 89 bar. The thermal properties of the saturated refrigerant were also determined. The results from this study showed that the dependence of viscosity on temperature near the critical region was nonlinear. This observation shows that errors resulting from using previous literature data for design purposes could vary from about 1.5% at 251 K to 30% at 343 K. A computer (IBM PC) was used to obtain empirical relationships for evaluating the thermophysical properties of R134a based on various sets of independent variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号