共查询到20条相似文献,搜索用时 67 毫秒
1.
张锦 《西安工业大学学报》2013,(10):781-784,789
为了寻找实用、廉价、性能良好的TiO2∶Eu3+发光薄膜,采用溶胶-凝胶法制备了TiO2∶Eu3+纳米发光薄膜.通过原子力显微镜与PL、PLE对样品薄膜的表面形貌和发光光谱进行了表征.研究结果表明:800℃退火的样品薄膜表面起伏不平,无开裂,且颗粒大小比较均匀,表面起伏度约为32nm,用540nm激发光源对800℃退火的TiO2∶Eu3+发光薄膜进行激发时,样品显示出强红光发射,对应于Eu3+的5 D0→7F2超灵敏跃迁;且荧光强度随着烧结温度的升高先增强再减弱,800℃时达到最大值,表明存在最佳的热处理温度. 相似文献
2.
采用溶胶-凝胶-燃烧法在800℃合成了掺杂Ce3+和Tb3+的MgO-Al2O3体系发光材料,比传统高温固相扩散法的合成温度降低了700~800℃.研究了MgO-Al2O3基质当中单掺杂Tb^3+及共掺杂Ce^3+、Tb^3+的发光材料荧光光谱行为,以及恒定温度下时间与浓度对发光材料荧光光谱行为的影响,并对其红外光谱和反应原理进行了探讨. 相似文献
3.
MgO薄膜的制备和二次电子发射性能的表征 总被引:1,自引:0,他引:1
以无机盐为原料,用溶胶-凝胶技术在S i(111)衬底上制备(100)取向M gO薄膜。镁硝酸盐的冰醋酸溶液加热回流转化形成的M g(CH3COO)2,与乙酰丙酮(A cA c)分子形成环状螯合物M g(CH3COO)2-x(A cA c)x可抑制M g2 离子的过度水解,经水解形成的M g(OH)2-x(A cA c)x羟基聚合形成镁的羟基簇状结构溶胶。丙三醇(GL)防止羟基镁过度聚合,聚乙烯醇(PVA)分子中强极性基团-OH和金属离子螯合或化学吸附,使镁的羟基簇状结构溶胶具有线状或网状结构,易于成膜。有机添加剂也会使M gO薄膜在热处理过程的热应力因薄膜塑性增强而降低。文中对形成的M gO薄膜的微结构、形貌等进行了分析,通过M gO薄膜二次电子发射系数γ值的测定,反馈M gO薄膜的性能,为提高PDP(p lasm a d isp lay panels)性能提供依据。 相似文献
4.
通过在溶胶-凝胶工艺中引入不同的有机改性硅先驱体,将激光染料PM567、P-red分别掺杂于锆-有机改性硅酸盐凝胶玻璃(Zr-ORMOSILs)中.将所得的(Zr-ORMOSILs)溶胶旋涂在载波片上,制备了波导膜,测量了薄膜的折射率.并在紫外连续辐照下,以染料荧光强度下降的幅度来表征染料在介质中的光学稳定性.实验结果表明有机改性基团的适当引入可提高染料的光稳定性,当Zr的含量为25%或50%时,激光染料PM567具有较好的光稳定性.随着Zr含量的增加,波导薄膜的折射率增加.综合考虑光稳定性和折射率,选择50% 的Zr浓度配比作为染料掺杂Zr-ORMOSIL波导薄膜的制备工艺.在50%Zr浓度配比下,有机染料PM567和P-red在以乙烯基三乙氧基硅烷(VTES)为先驱体的材料中,光稳定性较好. 相似文献
5.
采用溶胶一凝胶法在石英玻璃衬底上制备了Fe掺杂的ZnO薄膜,研究了不同的Fe掺杂浓度对ZnO薄膜的微结构与光学性质的影响.利用x射线衍射分析了薄膜样品的晶向和晶相.利用原子力显微镜观测了薄膜样品的表面形貌,利用双光束紫外-可见分光光度计分析了znO薄膜样品的光学性质.实验结果表明:所有ZnO薄膜样品都是六角纤锌矿结构,ZnO晶粒沿c轴择优生长.质量分数为1%fe掺入之后,ZnO薄膜的C轴择优取向进一步增强,薄膜的晶化质量也得到进一步提高.当Fe的掺杂浓度高于1%时,ZnO薄膜(002)衍射峰的强度又降低了,这可能是由于Fe2+(x=2或3)和zn2+具有不同的离子半径,大量的Fe2+进入晶格取代Zn2+导致晶格严重畸变,从而影响了znO晶粒的正常生长.所制备的ZnO薄膜在可见光区都具有高的透射丰,由吸收边估算出来的ZnO薄膜的光学带隙表明:随着Fe的掺杂浓度的提高,光学带隙逐渐展宽. 相似文献
6.
溶胶-凝胶法合成Sr2MgSi2O7:Eu2+,Dy3+长余辉发光材料 总被引:5,自引:2,他引:5
以Si(OC2H5)4、MgO、Sr(NO3)2、H3BO3、Eu2O3、Dy2O3等为原料,采用溶胶-凝胶法,在低于传统高温固相法近200℃的温度下,合成了长余辉发光材料Sr2MgSi2O7:Eu^2 ,Dy^3 ,研究了由溶胶向凝胶转变和凝胶向发光晶体转变的过程。测试结果表明,用溶胶一凝胶法制备的样品较高温固相法余辉性能有较大提高,余辉时间达到12h以上。 相似文献
7.
Ag掺杂纳米TiO2薄膜制备及其结构表征的研究 总被引:1,自引:0,他引:1
以钛酸四丁酯、无水乙醇、硝酸银为原料,硝酸作为催化抑制剂,采用溶胶-凝胶法获得前躯体,将前躯体煅烧制备了Ag掺杂纳米TiO2粉体和薄膜.采用DTA-TG对前躯体的热分解行为进行研究,利用XRD对制备的粉体TiO2产物的晶型、粒度和粒径分布分析,并利用SEM对薄膜的表面形貌和颗粒粒度进行表征观察.试验结果表明,纳米TiO2产物的晶型为锐钛矿型,其中在350℃煅烧的粉体和薄膜中,晶粒平均粒径为十几纳米左右,粒径分布较窄,且薄膜表面厚度分布均匀. 相似文献
8.
采用溶胶.凝胶法合成了Sr2SiO4:Ce3+,Mn2+荧光粉,合成温度为900℃,这远低于固相法制备同类硅酸盐材料所需的温度.X射线衍射图表明,所得样品主要为纯相Sr2SiO4晶体.样品发射光谱为峰值位于472 nm的不对称单峰宽带谱,是典型的蓝白光发射.通过改变Ce3+、Mn2+的浓度,进一步研究了掺杂浓度对发光强度的影响. 相似文献
9.
以钛酸丁酯为前驱物配制出钛溶胶,向钛溶胶中添加以钨粉过氧化聚钨酸法制备的氧化钨溶液,形成TiO2/WO3混合溶胶,采用溶胶一凝胶浸渍法制备出掺入WO3的TiO2超亲水性薄膜。研究了各工艺参数对薄膜水接触角的影响,实验结果表明掺入一定量的WO3可制得良好的超亲水性薄膜材料。 相似文献
10.
以氧化二乙酰丙酮合钒(C10H14O5V)为前驱体,乙醇钽[Ta(OC2H5)5]为掺杂剂,用溶胶-凝胶方法在Si(100)和SiO2/Si衬底上制备了V1-xTaxO2(x=0-0.1)多晶薄膜。XRD谱图显示薄膜呈(011)面取向生长。随着Ta掺杂量的增大,d(011)基本呈线性增大表明Ta替代了V在晶格中的位置,实现了替位掺杂。每掺杂1%原子比的Ta,相变温度降低7.8℃,相变热滞减小1℃。SiO2/Si衬底上5%原子比掺杂薄膜的相变温度为29.5℃,室温(300 K)电阻-温度系数(TCR)为-8.44%/K。两种衬底上掺杂V0.9Ta0.1O2薄膜的升温和降温电阻-温度曲线基本重合。实验结果显示,Ta是降低VO2薄膜的相变温度和消除相变热滞的有效掺杂剂。 相似文献
11.
Eu3+激活的碱土金属钼酸盐荧光粉合成及其发光性质 总被引:2,自引:0,他引:2
采用高温固相反应法制备了CaMoO4:Eu,A(A=Li,Na,K)系列和MMoO4:Eu,Li(M=Ca,Sr,Ba,Mg)系列的发光材料,并采用X射线衍射,荧光光谱对这2个系列发光材料的结构及其发光性质进行了对比研究.结果表明,CaMoO4:Eu,A(A=Li,Na,K)系列荧光粉具有相同的结构,均属于四方晶系,具有相似的光谱性质,碱金属离子为Li时发光性能最好.MMoO4:Eu,Li(M=Ca,Sr,Ba,Mg)系列荧光粉中,MgMoO4:Li,Eu为单斜晶系,底心结构,其他3种荧光粉为四方晶系,体心结构.在395nm近紫外光激发下,CaMoO4:Eu,Li发光性能最好. 相似文献
12.
用溶胶凝胶法合成GdAl3(BO3)4:Eu3 红色荧光粉.晶化温度为960℃,晶化时间为2 h;用X射线衍射进行结构表征,并用Jade5程序对GdAl3(BO3)4:Eu3 粉末样品的X射线衍射数据进行了指标化.结果表明:GdAl3(BO3)4:Eu3 为六方晶系,晶胞参数a=9.299 2 nm,c=7.257 7 nm;荧光性能测试结果为:室温613 nm监测,其激发光谱峰为:270,391,400,472,542,728,766和791nm.在270 nm激发下,最大发射峰为613 nm. 相似文献
13.
采用高温固相法在空气气氛中制备了具有NASICON结构的Eu3+掺杂Na3Zr2Si2PO12:Eu3+红色荧光粉。利用X射线衍射、漫反射光谱、荧光光谱、荧光寿命衰减曲线以及量子效率系统研究了该样品的晶体结构及荧光性能。结果表明,样品XRD图中不含明显的杂峰,表明在实验浓度范围内Eu3+的掺杂没有改变基质的晶体结构,样品为单相。合成过程中,需要对样品多次压片烧结,才能获得较好的单相。在近紫外光激发下,样品能发出618 nm红光,荧光强度最大对应的Eu3+的掺杂摩尔分数是24%。根据Rexter理论分析,浓度猝灭源于Eu3+离子之间的电四极-电四极相互作用。样品在室温下的最高内量子效率和外量子效率分别是61%和15%,荧光衰减的寿命范围在2.08~2.84 ms。样品Na2.76Zr2Si2PO12:0.24 Eu3+在150℃时内量子效率约为50%,表明样品具有良好的热稳定性。将样品Na2.76Zr2Si2PO12:0.24 Eu3+与394 nm波长的紫外芯片封装成LED灯,显色指数达到75.6.Eu3+掺杂Na3Zr2Si2PO12有望作为一种新型红色荧光粉用于近紫外激发白光LED。 相似文献
14.
YF3:Eu^3+发光纳米束的制备与性能研究 总被引:2,自引:0,他引:2
在CTAB辅助的水热条件下制备出YF3Eu3+纳米柬材料.XRD分析表明:样品为结晶良好的正交相YF3.TEM照片表明:所得样品直径为250nm,长度约为1000nm的YF3:Eu3+纳米束,且纳米束是由直径为20nm,长度为100nm的纳米晶自组装而成.SEAD显示所得样品为单晶结构.光谱测试表明样品的最强发射峰位于591 nm处,为Eu3+的特征橙红光发射.对应Eu3+的5D0→F1的磁偶极跃迁. 相似文献
15.
采用高温固相法合成了Ca2SiO3Cl2:Eu^3+红色荧光粉,并对其发光性质进行了研究.在Ca2SiO3Cl2:Eu^(3+)体系中观察到Eu^3+的特征发射谱线,发射光谱有5个主要荧光发射峰,峰值波长分别为583 nm,598 nm,620 nm,658 nm和692 nm,分别对应^5D0~^7F0,^5D_0~^7F1,^5D_0~^7F_2,^5D0~^7F3和^5D0~^7F4的跃迁是典型的Eu^3跃迁.进一步研究了发光强度随Eu^3+浓度的变化规律,没有发现明显的浓度淬灭现象.采用Li^+作为电荷补偿剂和共激活剂可以大幅度提高发光强度.实验结果表明,Ca2SiO3Cl2:Eu^3+是一种适用于UVLED激发的白光LED的红色荧光粉. 相似文献
16.
固相反应法合成Sr3Al2O6:Eu3+红色荧光材料 总被引:3,自引:0,他引:3
稀土离子激活的铝酸盐发光材料具有优良的性能和较低的成本,但目前还缺少红色发光材料。文章利用高温固相反应法在1200℃合成了Sr3Al2O6:Eu^3+红色荧光材料,该材料有两个位于250nm和295nm附近的宽谱激发峰,能高效率吸收紫外光,发射出590nm、620nm、655nm、703nm的红色荧光,是一种发光强度较高的红色荧光材料。 相似文献
17.
采用高温固相法合成Mg2-xSnO4∶Eu3+x系列橙红色发光粉.用X射线衍射分析测定Mg2-xSnO4∶Eu3+x荧光粉的晶体结构,用F-4600荧光分光光度计测定其激发光谱和发射光谱.结果表明:Mg2-xSnO4∶Eu3+x荧光粉属于正交晶系,在250~370 nm是一个很宽的激发峰,它属于O-Eu的电荷迁移带和Eu3+的f-f高能级跃迁吸收.发射光谱由588 nm、595 nm、598 nm、617 nm4个主要发射峰组成,它们分别属于Eu3+的5D0-7F1(588 nm,595 nm,598 nm)和5D0-7F2(617 nm)跃迁,以5D0-7F1跃迁为主.具体研究激活剂Eu3+的掺杂量对Mg2-xSnO4∶Eu3+x发光粉发光性能的影响.结果表明Eu3+的最佳掺杂浓度为7%. 相似文献
18.
以Y2O3,Eu2O3为原料,NH3?H2O和NH4HCO3为沉淀剂,采用共沉淀法,在700至1200℃下煅烧2h制备出Y2O3:Eu3+纳米粉体,通过X射线衍射分析(XRD)、扫描电镜(SEM)和荧光分光光度计等表征样品的性能,研究不同掺杂浓度,不同烧结温度及不同沉淀剂对粉体各项性能的影响。结果表明,以两种沉淀剂制备的纳米粉体均为纯相,与Y2O3标准PDF卡片41-1105相吻合。以NH3?H2O为沉淀剂制备出来的前驱体在1100℃下煅烧2h获得的粉体分布均匀,近似球形,粒径分布在50~80nm,以NH4HCO3为沉淀剂制备出来的前驱体在1100℃下煅烧2h获得的粉体分布均匀,纯度高,具有良好的分散性,粒径分布在60~80nm。制备出来的粉体在波长为254nm的紫外光激发下发出611nm的红光。 相似文献
19.
采用传统工艺方法制备以YAG:Eu3和Eu2 O3两种方式掺杂Eu3+的系列SiO2-NaF-YAG系氟氧化物玻璃.研究Eu3+离子浓度对玻璃发光强度的影响;采用XRD、红外光谱和荧光光谱研究Eu3+离子掺杂的玻璃的结构和发光性能.XRD谱表明样品为非晶态玻璃;红外光谱的研究结果表明:玻璃是以硅氧四面体网络结构为主;发射光谱研究结果表明:发射峰来自于Eu3+的5D0→7F0、5 D0→7F1和5D0→F2跃迁,614 nm处的特征发射峰最强.YAG∶Eu3+形式掺杂的玻璃的发光性能较好,且Eu3+周围的晶格场环境具有较高的对称性.在掺杂浓度0.15% ~1.0%范围内没有发生浓度淬灭现象. 相似文献
20.
采用共沉淀法合成了一系列掺杂Eu3+,Dy3+的Zn3(BO3)2纳米发光材料,X射线衍射测定其物相为单斜晶系的Zn3(BO3)2,平均粒径为15~25?nm左右,同时研究了Eu3+,Dy3+掺杂样品的发光特性.在Eu3+和Dy3+共同掺杂的体系中,可以观察到由于Eu3+,Dy3+之间的能量传递使Eu3+强烈敏化Dy3+的发光现象. 相似文献