首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 115 毫秒
1.
稀土处理玻璃纤维填充PTFE复合材料的滑动磨损性能   总被引:5,自引:0,他引:5       下载免费PDF全文
研究了不同玻璃纤维表面处理对PTFE复合材料在干摩擦条件下滑动磨损性能的影响,并借助扫描电子显微镜(SEM)分析了磨损机理。结果表明:在干摩擦条件下,经表面处理玻璃纤维填充的PTFE复合材料的摩擦系数和摩擦表面温度比未经处理玻璃纤维填充的PTFE复合材料的低,且减磨性能优于未经处理的;而稀土处理玻璃纤维填充的PTFE复合材料的摩擦系数和摩擦表面温度最低,减磨性能最好;未经处理玻璃纤维填充的PTFE复合材料和偶联剂处理玻璃纤维填充的PTFE复合材料都发生了剧烈的粘着转移;偶联剂与稀土处理玻璃纤维填充的PTFE复合材料的磨损机理主要是明显的磨粒磨损;稀土处理玻璃纤维填充PTFE复合材料的磨损形式主要是粘着转移和轻微的磨粒磨损。  相似文献   

2.
混杂填料增强PTFE复合材料的摩擦磨损性能   总被引:4,自引:1,他引:4  
利用M-2000型摩擦磨损试验机考察了载荷以及纳米TiO2/SiO2与玻璃纤维的混合填料对PTFE复合材料摩擦磨损性能的影响,用扫描电子显微镜观察了复合材料磨损后的表面形貌.结果表明:纳米材料与玻璃纤维的协同作用显著改善了材料的摩擦磨损性能,其中纳米TiO2与玻纤填充复合材料的耐磨性较好,磨损量降低了2~3个数量级,其磨损机制是低载荷下为磨粒磨损.高载荷下为疲劳磨损;纳米SiO2与玻纤填充复合材料的摩擦系数与PTFE相近,磨损机制是低载荷下为磨粒磨损,高载荷下为粘着磨损和表面微犁削磨损.  相似文献   

3.
纤维及晶须增强PTFE复合材料的摩擦磨损性能研究   总被引:7,自引:0,他引:7  
利用MHK-500型环-块磨损试验机,对炭纤维,玻璃纤维及钛酸钾(K2Ti6O13)晶须增强聚四氟乙烯(PTFE)复合材料在干摩擦条件下与GCr15轴承钢对磨时的摩擦学性能进行了较为系统的研究,并利用扫描电子显微镜(SEM)和光学显微镜对其磨屑和摩擦表面进行了观察。结果表明,炭纤维,玻璃纤维及K2Ti6O13晶须虽增大了PTFE的摩擦系数,但均可将PTFE的磨损量降低2个数量级,其中玻璃纤维的减磨效果最好,K2TiO13晶须的减磨效果最差,由于K2TiO13晶须的承载能力较差,致使K2Ti6O13晶须增强PTFE复合材料的磨损表面发生了明显的挤压变形,因而该复合材料具有较高的摩擦和磨损。  相似文献   

4.
金属填充PTFE复合材料的摩擦磨损性能研究   总被引:21,自引:0,他引:21  
利用MHK-500型环块磨损实验机,对金属Cu、pb及Ni填充改性的PTEFE复合材料在干摩擦条件下与GCr15轴承钢对摩时的摩擦磨损性能进行了系统研究,并利用JEM-1200EX/S分析电子显微镜和光学显微镜对PTEE复合材料的磨屑及摩擦磨损表面进行了考察。摩擦磨损实验的结果表明,金属填料Cu、Pb及Ni大大改善了PTFE复合材料的耐磨性,PTFE复合材料的磨损量比纯PTFE降低了1-2个数量级  相似文献   

5.
陶瓷颗粒填充PTFE复合材料的摩擦磨损性能研究   总被引:23,自引:0,他引:23  
利用MHK-500型坏-块磨损试验机,对陶瓷颗粒SiC,Si3N4,BN和B2O3填充的聚四氟乙烯(PTFE)复合材料在干摩擦条件下与GCr15轴承钢对摩时的摩擦磨损性能进行了较为系统的研究,并利用扫描电子显微镜(SEM)和光学显微镜对PTEF复合材料的摩察表现进行了观察,结果表明,添加B2O3降低了PTEF的摩擦系数,而添加SiC,Si3N4及BN则增大了PTFE的摩擦系数,但是,SiC,Si3N4,BN和B2O3均可将PTFE的磨损量降低1-2个数量级,其中以Si3N4的减磨效果最好,B2O3的减磨效果最差。  相似文献   

6.
利用MHK-500 型环-块磨损试验机, 对MoS2、CuS、PbS 及石墨(添加量均为30 vo l% )填充的聚四氟乙烯(PTFE) 复合材料在干摩擦条件下与GCr15 轴承钢对摩时的摩擦磨损性能进行了较为系统的研究, 并利用扫描电子显微镜(SEM ) 和光学显微镜对PTFE 复合材料的磨屑和摩擦磨损表面进行了观察。结果表明, 添加石墨降低了PTFE 的摩擦系数, 而添加MoS2、CuS 及PbS则增大了PTFE 的摩擦系数; 同时, 添加MoS2、CuS、PbS 及石墨均可将PTFE 的磨损量降低2 个数量级, 其中以PbS 的减磨效果为最好, 而MoS2 的减磨效果则最差。   相似文献   

7.
叶恩淦  王海波  朱月华  蒋利华  卓宁泽 《材料导报》2018,32(6):961-964, 976
采用稀土改性剂(RES)与硅烷偶联剂(PTMS)按不同组分配比对磨碎玻璃纤维(MGF)表面进行改性处理,将改性后的磨碎玻璃纤维粉末与聚四氟乙烯分散液机械混合,然后热压制得复合材料。探讨了复配稀土改性剂对MGF/PTFE复合材料介电性能、热膨胀系数(CTE)、热导率的影响。采用FTIR手段对稀土改性剂未改性的磨碎玻璃纤维和改性后的磨碎玻璃纤维的结构进行了测试,并用扫描电子显微镜(SEM)对复合材料的断口形貌进行分析。结果表明,复配改性剂能很好地促进MGF与PTFE之间的界面粘结,提高MGF/PTFE复合材料的性能。当RES、PTMS的含量分别为0.3%(质量分数)、1.7%(质量分数)时,MGF/PTFE复合材料的性能最好。  相似文献   

8.
三种碳纳米材料改性PTFE复合材料摩擦磨损特性   总被引:1,自引:0,他引:1  
对3种碳纳米材料(碳纳米管、纳米石墨及碳黑)/PTFE(聚四氟乙烯)复合材料进行了摩擦磨损性能研究,对磨损表面进行了分析。结果表明:3种碳纳米材料均可改善PTFE复合材料耐磨性,以纳米碳黑改善效果较好,其最佳添加含量为7%。纳米石墨可减小PTFE复合材料摩擦系数,碳纳米管和纳米碳黑会增大PTFE复合材料摩擦系数,且含量越高,复合材料摩擦系数增幅越大。无定形纳米碳黑对PTFE耐磨性的改善效果较好,其表面为轻微粘着磨损;结晶型纳米石墨和碳纳米管与PTFE相容性差,其表面为严重粘着磨损。  相似文献   

9.
目的研究适配器PTFE层氟化石墨填充改性后的摩擦磨损性能,提高适配器的耐磨性。方法以质量分数为2%,5%,8%,11%的氟化石墨为填料制备PTFE基复合材料,分别在20,40,60,80 r/min的转速下测试试样摩擦因数。通过三维视频显微镜采集试样表面磨损数据,并计算其体积磨损率。扫描电子显微镜(SEM)观察磨痕微观形貌。结果同一转速下,试样的摩擦因数随着氟化石墨质量分数的增加而增大。填充氟化石墨能显著降低试样的体积磨损率,填充物质量分数超过8%后,试样体积磨损率趋于稳定,试样摩擦因数得到明显增大。结论氟化石墨填充PTFE层可显著提高适配器的耐磨性,但质量分数不能超过8%,否则,会造成适配器与运输筒间的摩擦因数增大,增加航天器装填及出筒阻力。  相似文献   

10.
改性聚酰亚胺摩擦磨损性能的研究   总被引:5,自引:0,他引:5       下载免费PDF全文
论述了不同含量的聚四氟乙烯对聚酰亚胺(P I)/聚四氟乙烯(PTFE) 复合材料摩擦磨损性能的影响。研究结果表明, PTFE 的加入可有效地改善P I 的摩擦磨损特性, 当PTFE 含量在10~20% 的范围内时, 可明显降低P I 的摩擦系数, 其磨损特性主要表现为磨料摩擦和粘着磨损。在P I中添加不同含量的PTFE 的比较结果为: 当PTFE 含量为20% 时, 复合材料的综合性能最佳。   相似文献   

11.
稀土元素对玻璃纤维增强PTFE复合材料拉伸性能的影响   总被引:3,自引:0,他引:3  
三种表面改性剂,即硅烷偶联剂SG-Si900(SG)、含 SG-Si900的稀土溶液(SGS/RES)和稀土溶液(RES)用于玻璃纤维表面处理.研究了不同表面处理条件下玻璃纤维增强聚四氟乙烯(GF/PTFE)复合材料的拉伸性能,并应用SEM对断口形貌进行了分析.试验结果表明:由于稀土元素的作用,稀土溶液RES比SGS/RES和SGS能够更好地提高玻璃纤维与PTFE之间的界面结合力;经RES处理的GF/PTPE复合材料的界面结合力主要受稀土元素含量的影响,当稀土元素含量为0.2~0.4Wt%时,GF/PTFE复合材料的拉伸性能大大提高,并且在稀土元素含量为0.3wt%时其性能最佳.  相似文献   

12.
用机械共混、冷压成型和空气中烧结的方法制备了不同质量分数的聚丙烯腈填充聚四氟乙烯制品。用MM-200摩擦磨损试验机测试不同样品在干摩擦下的摩擦学行为;用扫描电子显微镜和光学显微镜对几种样品的磨损面、磨屑和转移膜进行观察和分析。结果表明,聚丙烯腈的加入,不但使聚四氟乙烯的磨损量大幅降低,而且还使其摩擦系数有所降低。通过扫描电子显微镜观察发现填充聚丙烯腈的聚四氟乙烯样品的对磨面有完整而且不易脱落的转移膜,这是其具有良好耐磨性的主要原因。  相似文献   

13.
纳米TiO2与炭纤维协同填充PTFE复合材料的摩擦磨损性能   总被引:2,自引:0,他引:2  
考察了不同含量的纳米二氧化钛对炭纤维/聚四氟乙烯复合材料摩擦磨损性能的影响,采用扫描电子显微镜、光学显微镜分析了磨损面、磨屑及对偶面转移膜形貌,并探讨了其磨损机理。结果表明,纳米TiO2与炭纤维能够很好地协同增强聚四氟乙烯,改变磨屑形成机理,有利于形成均匀致密的转移膜,明显提高CF/PTFE复合材料的耐磨性。当纳米TiO2含量为5%时,10?/PTFE复合材料表现出最佳的耐磨性,耐磨性又提高了2.77倍,而磨屑尺寸只有未加时的1/20。  相似文献   

14.
纳米蒙脱石填充PTFE和UHMWPE的摩擦磨损性能   总被引:3,自引:0,他引:3  
用纳米蒙脱石(nano-MMT)对聚四氟乙烯(PTFE)和超高分子量聚乙烯(UHWMPE)进行填充改性,在往复式滑动摩擦试验机上进行摩擦磨损实验,用扫描电镜观察了材料摩擦表面形貌.结果表明:nano-MMT可以提高PTFE和UHWMPE材料的耐磨性,而PTFE基和UHWMPE基复合材料的摩擦系数无明显增大.与UHMWPE相比,nano-MMT更能提高PTFE基材料的耐磨性;nano-MMT/PTFE复合材料比nano-MMT/UHMWPE复合材料具有更低的摩擦系数和更好的导热性;纯PTFE、纯UHWMPE和10%nano-MMT/PTFE复合材料磨损机理主要为粘着和犁沟效应,而10%nano-MMT/UHWMPE复合材料表现为犁沟和疲劳机制.  相似文献   

15.
偶联剂处理SiC纤维增强PTFE复合材料的性能   总被引:1,自引:0,他引:1  
用共混冷压成型法制备了SiC短纤维(未处理和偶联剂表面处理)增强聚四氟乙烯(PTFE)复合材料,测试了复合材料的力学和摩擦磨损性能,研究了表面处理对PTFE复合材料性能的影响,用扫描电子显微镜(SEM)对拉伸断面形貌进行观察,探讨了纤维增强复合材料的机理。研究结果表明:偶联剂处理SiC纤维表面后,复合材料的拉伸强度、冲击强度、减摩耐磨性能均比未处理的有所提高。拉伸断面的SEM分析表明,未处理SiC纤维与PTFE的界面黏结较差,界面出现了许多空隙,偶联剂处理后,SiC纤维与PTFE界面黏结较好,在拉伸过程中多数SiC纤维被基体牢固黏附而难以拔出。  相似文献   

16.
用机械共混、冷压成型自由烧结的方法制备了PTFE基复合材料;用M-2000型磨损试验机测试了在干摩擦定载荷条件下各试样的磨损性能;用扫描电子显微镜(SEM)对磨损试样的表面形貌进行了观察和分析.结果表明:在实验条件下,复合材料的抗磨性能,随青铜粉用量的增大逐渐增强,当青铜粉的用量大于20vol.%后,抗磨损性能增强的趋势明显减缓,在干摩擦条件下复合材料主要发生粘着磨损和磨粒磨损,且随青铜粉用量的增加,磨粒磨损也越明显.研究发现,当青铜粉:氧化镉:二硫化钼为20:6:4(体积比)时,复合材料的摩擦磨损性能最佳.  相似文献   

17.
聚苯酯基复合材料的摩擦学性能   总被引:1,自引:0,他引:1  
对比考察了炭纤维(CF)、聚四氟乙烯(PTEE)、单独和混合填充聚苯酯复合材料的摩擦磨损性能,利用扫描电子显微镜(SEM)分析了磨损面形貌,并探讨了其摩擦磨损机理.结果表明,CF、PTEE填充Ekonol复合材料,比CF或PTEE单独填充复合材料的低摩擦系数、低磨损率还分剐降低了17%、48%,是纯Ekonol摩擦系数的58%,耐磨性的1.8×104倍.CF、PTEE二者表现出了协同润滑与减磨效应.PTEE改善了难熔基体颗粒之间以及基体与纤维之间的粘接,而含量适当的CF对Ekonol起到了承载作用,且协助形成连续、均匀的转移膜.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号