首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The single-phase α-sialon ceramics with high optical transmittance have been prepared by hot pressing. The maximum transmittance reached 65.2% and 52.2% in the infrared wavelength region, 58.5% and 40% in the visible region for the samples 1.0 and 1.5 mm thickness, respectively. The material also exhibited good mechanical properties of high hardness (20 GPa) and better fracture toughness (5.1 MPa·m1/2). Both high optical transmittance and improved toughness of α-sialon ceramics were attributed to the less-grain-boundary glassy phase and the homogeneous microstructure, which was obtained by a proper process and confirmed by SEM and TEM observation, compared to that prepared by ordinary sintering. It is, therefore, expected that the translucent α-sialon ceramics could be a promising optical window material.  相似文献   

2.
The corrosion behavior of sialon ceramics was investigated in supercritical water at 450°C under 45 MPa for 2–50 h. α-sialon exhibited better corrosion resistance than β-sialon and α/β-sialon. Pitting corrosion with the formation of corrosion products was observed in the case of β-sialon and α/β-sialon. By contrast, the corrosion behavior of α-sialon was characterized by uniform corrosion with the formation of corrosion products. The degree of strength deterioration was strongly dependent on the corrosion morphology. The bending strength of α-sialon after corrosion for 30 h was about 90% of its initial strength, while the strength of β-sialon decreased to 65% of its original strength.  相似文献   

3.
Hot-pressed Dy-α-sialon ceramics, using LiF as a sintering additive, were fabricated at lower temperatures (≤1650°C). Some of the densified samples possessed higher hardness and fracture toughness up to 19.00–20.00 GPa and 4.00–6.00 MPa·m1/2, respectively. The amount of LiF had a strong effect on the densification behavior in sialon preparation. As one of the experimental results, the sample with 0.1 wt% of LiF additive sintered at 1600°C produced an optical translucence of about 50% in the range of 1.5–5.0 μm wavelengths. The maximum infrared transmission reached ∼60% at a wavelength of 2.4 μm. It is inferred that these more easily sintered materials would be practical for optical applications in certain fields.  相似文献   

4.
Dense sialon ceramics along the tie line between Si3N4 and Nd2O3·9AlN were prepared by hot-pressing at 1800°C. The materials were subsequently heat-treated in the temperature range 1300–1750°C and cooled either by turning off the furnace (yielding a cooling rate (Tcool) of ∼50°C/min) or quenching (Tcool≥ 400°C/min). It was found necessary to use the quenching technique to reveal the true phase relationships at high temperature, and it was established that single-phase α-sialon forms for 0.30 x 0. 51 in the formula NdxSi12–4S x Al4.5 x O1. 5 x , N16–1.5 x . The α-sialon is stable only at temperatures above 1650°C, and it transforms at lower temperatures by two slightly different diffusion-controlled processes. Firstly, an α-sialon phase with lower Nd content is formed together with an Al-containing Nd-melilite phase, and upon prolonged heat treatment thus-formed α-sialon decomposes to the more stable β-sialon and either the melilite phase or a new phase of the composition NdAl(Si6-zAlz)N10-zOz. Nd-doped α-sialon ceramics containing no crystalline intergranular phase show very high hardness (HV10 = 22. 5 GPa) and a fracture toughness ( K lc= 4.4 MPa·m1/2) at room temperature. The presence of the melilite phase, which easily formed when slow cooling rates were applied or by post-heat-treatment, reduced both the fracture toughness and hardness of the materials.  相似文献   

5.
The yttrium–sialon ceramics with the composition of Y0.333Si10Al2ON15 and an excess addition of Y2O3 (2 or 5 wt%) were fabricated by hot isostatic press (HIP) sintering at 1800°C for 1 h. The resulting materials were subsequently heat-treated in the temperature range 1300–1900°C to investigate its effect on the α→β-sialon phase transformation, the morphology of α-sialon grains, and mechanical properties. The results show that α-sialons stabilized by yttrium have high thermal stability. An adjustment of the α-sialon phase composition is the dominating reaction in the investigated Y–α-sialon ceramics during low-temperature annealing. Incorporation of excess Y2O3 could effectively promote the formation of elongated α-sialon grains during post-heat-treating at relatively higher temperature (1700° and 1900°C) and hence resulted in a high fracture toughness ( K IC= 6.3 MPa·m1/2) via grain debonding and pullout effects. Although the addition of 5 wt% Y2O3 could promote the growth of elongated α grains with a higher aspect ratio, the higher liquid-phase content increased the interfacial bonding strength and therefore hindered interface debonding and crack deflection. The heat treatment at 1500°C significantly changed the morphology of α-sialon grains from elongated to equiaxed and hence decreased its toughness.  相似文献   

6.
Duplex αβ,-sialon ceramics with a minimum volume fraction of residual intergranular glass have been prepared using Dy or Sm as the α-sialon stabilizing element. These microstructures contained high aspect ratio β-sialon grains homogeneously distributed in an α-sialon matrix. A number of the larger α-sialon grains contained dislocations and showed a core/shell structure. Dy gave an α-sialon which was stable over a wide temperature range (1350–1800°C) for long holding times, while the use of Sm resulted in less stable α-sialon structures at medium temperatures (1450°C) and the formation of melilite, R2Si3−xAlxO3+xN4−x, β-sialon, and the 21R sialon polytype during prolonged heating. High α-phase contents gave a very high hardness ( H V10 is approximately 22 GPa) but a comparatively low indentation fracture toughness (around 4.4 MPam1/2). Duplex sialons fabricated from powder mixtures corresponding to an α-to-β sialon ratio of around 50:50 resulted in a sialon material with a favorable combination of high hardness (around 22 GPa) and increased toughness (to around 5.5 MPam1/2).  相似文献   

7.
Plasma etching of β-Si3N4, α-sialon/β-Si3N4 and α-sialon ceramics were performed with hydrogen glow plasma at 600°C for 10 h. The preferential etching of β-Si3N4 grains was observed. The etching rate of α-sialon grains and of the grain-boundary glassy phase was distinctly lower than that of β-Si3N4 grains. The size, shape, and distribution of β-Si3N4 grains in the α-sialon/β-Si3N4 composite ceramics were revealed by the present method.  相似文献   

8.
The hot hardness of polycrystalline single-phase α- or β- sialon ceramics declines with increasing temperature, but the measured Vickers hardness (HV1) at 1100°C is still about 1550 and 1300 for the α-sialon and the low-substituted β-sialon materials, respectively. The hardness of 'composite'β- or α-β-sialon ceramics containing a high volume fraction of glassy phase is lower at all temperatures and drops significantly above about 900°C.  相似文献   

9.
The translucent Mg-α-sialon ceramics have been prepared by spark plasma sintering (SPS) α-Si3N4 powder with AlN and MgO as the additives at 1850°C for 5 min. The sample possesses a uniform, dense microstructure under the rapid densification of SPS process. The translucent Mg-α-sialon ceramics achieve the maximum transmittance of 66.4% for the sample of 0.5 mm in thickness in the medium infrared region, which could be attributed to the equiaxed microstructure and few glassy phase confirmed by the observation of transmission electron microscopy. The material also exhibits good mechanical properties of high hardness (21.4±0.3 GPa) and fracture toughness (6.1±0.1 MPa·m1/2).  相似文献   

10.
Two-phase α/β composites have been produced with a combination of high hardness, fracture toughness, and strength. Compared with a single-phase α-sialon, the composite showed around a twofold increase in both fracture toughness and bending strength, with only minimal reduction in hardness. Despite being a two-phase material, the optical properties of the composite were very good, showing transparency in sections of around 0.5 mm thickness. The optical properties were in fact better for the composite than for the single-phase α-sialon. Work to date on transparent sialons has focused on single-phase α-materials, which have inherently low fracture toughness unless elongated microstructures are developed. However, this microstructural development appears to adversely affect optical transparency. In this work it has been shown that good combination of mechanical properties can be achieved while maintaining optical transparency in two-phase composite sialons. The development of such materials should widen their range of application.  相似文献   

11.
Dy-α-sialon and β-Si3N4 materials containing Dy-oxynitride glass were hot pressed at 1800°C for 1 h. The luminescence spectra of Dy3+ in these samples were compared when excited at 350 nm. The results showed that two strong emission bands in the region 470–500 nm and 570-600 nm, associated with the 4F9/26H15/2 and 4F9/26H13/2 transitions of Dy3+ ions, were observed in Dy-α-sialon. However, no emission peak was detected from the β-Si3N4 sample, despite it containing the same amount of Dy3+ cations. This proved that only the Dy3+ cations in the α-sialon structure, not those in the oxynitride glass, produce the luminescence spectrum.  相似文献   

12.
The effects of sintering cycles and doping elements on the microstructures of Ln-α-sialon were studied. The results showed that microstructures with an elongated α-sialon morphology could be obtained through high-temperature post-heat treatment (1800–1900°C) or by prolonging soaking times during sintering. Different rare-earth elements had a profound effect on the microstructure of the resulting α-sialon. The Ln-α-sialon doped with low- Z -value elements could easily develop elongated grains with higher aspect ratio.  相似文献   

13.
β-silicon carbide (SiC) porous ceramics were synthesized from pelletized powder mixtures of silicon (Si) and fullerene or Si and amorphous carbon (carbon black) at 1000 K for 24 h in sodium (Na) vapor. The relative density of the ceramics was 29%–34% of the theoretical density of SiC. Scanning electron microscopic observation of the fracture surface showed that the ceramics prepared with fullerene were agglomerates of submicrometer-sized SiC particles and open spaces. The samples prepared with carbon black had a smooth fracture surface with cavities and voids. Using transmission electron microscopy, grains of over 250 nm and a diffuse electron diffraction ring pattern of β-SiC were observed for the sample prepared with fullerene, and grains of 10–20 nm with a β-SiC spot ring pattern for the sample prepared with carbon black. A surface area of 11–17 m2/g and a mesopore size distribution in the range of 2–10 nm were shown by a nitrogen adsorption technique. Energy-dispersive X-ray analysis detected 1–5 at.% of Na against Si on the fracture surface of the ceramics.  相似文献   

14.
Dense α-sialon materials were produced by hot isostatic pressing (HIP) and post-hot isostatic pressing (post-HIP) using compositions with the formula Y x (Si12–4.5 x , Al4.5 x )-(O1.5 x ,N16–1.5 x ) with 0.1 ≤ x ≤ 0.9 and with the same compositions with extra additions of yttria and aluminum nitride. X-ray diffraction analyses show how the phase content changes from large amounts of β-sialon ( x = 0.1) to large amounts of α-sialon ( x = 0.4) and increasing amounts of mellilite and sialon polytypoids ( x = 0.8). Samples HIPed at 1600°C for 2 h contained unreacted α-silicon nitride, while those HIPed at 1750°C for 1 h did not. This could be due to the fact that the time is to short to achieve equilibrium or that the high pressure (200 MPa) prohibits α-sialon formation. Sintering at atmospheric pressure leads to open porosity for all compositions except those with excess yttria. Therefore, only samples with excess yttria were post-HIPed. Microstructrual analyses showed that the post-HIPed samples had the highest α-sialon content. A higher amount of α-sialon and subsequently a lower amount of intergranular phase were detected at x = 0.3 and x = 0.4 in the post-HIPed samples in comparison to the HIPed. The hardness (HV10) and fracture toughness ( K IC) did not differ significantly between HIPed and post-HIPed materials but vary with different x values due to different phase contents. Measurements of cell parameters for all compositions show a continuous increase with increasing x value which is enhanced by high pressure at high x values.  相似文献   

15.
In this study, we report highly transparent yttria ceramics fabricated by a facile hot‐pressing method with tantalum foil shielding which effectively prevents the ceramic samples from carbon contamination caused by the graphite mold used during the process. The hot‐pressed sample was already highly transparent without a post‐annealing step or hot isostatic pressing. For a 2‐mm‐thick specimen doped with 1 at.% ZrO2, the in‐line transmittance reaches 74.4% at 400 nm and 81.1% at 1100 nm. The sample shows a very fine microstructure with an average grain size of about 1 μm owing to the low sintering temperature of only 1600°C. The study results indicate that it is possible to produce transparent yttria ceramics with excellent optical transparency using the economical and convenient hot‐pressing method.  相似文献   

16.
The formation of the melilite solid solution phase (M'), Sm2Si3−xAlxO3+xN4−x, in an α-sialon sample of overall composition Sm0.6Si9.28Al2.69O1.36N14.76, was studied as a function of time in the temperature interval 1375–1525°C. The alpha-sialon ceramic contained only minor amounts of the 21R sialon polytype and some residual grain-boundary glass before heat treatment. In situ studies by high-temperature X-ray diffraction were combined with postsintering heat treatment followed by quenching. The M'-phase was found to be formed by two different mechanisms: either crystallization of the residual grain-boundary liquid or a direct decomposition of the α-sialon phase. The liquid crystallized during the first 10–15 min of heat treatment, yielding a rapid M'-phase formation, and further formation of M'-phase continued at a much slower rate, related to the decomposition of α-sialon.  相似文献   

17.
β-sialon and Nd2O3-doped α-sialon materials of varying composition were prepared by sintering at 1775° and 1825°C and by glass-encapsulated hot isostatic pressing at 1700°C. Composites were also prepared by adding 2–20 wt% ZrO2 (3 mol% Nd2O3) or 2–20 wt% ZrN to the β-sialon and α-sialon matrix, respectively. Neodymium was found to be a fairly poor α-sialon stabilizer even within the α-phase solid solution area, and addition of ZrN further inhibited the formation of the α-sialon phase. A decrease in Vickers hardness and an increase in toughness with increasing content of ZrO2(Nd2O3) or ZrN were seen in both the HIPed β-sialon/ZrO2(Nd2O3) composites and the HIPed Nd2O3-stabiIized α-sialons with ZrN additions.  相似文献   

18.
Cerium-doped α-SiAlON (M x Si12−( m + n )Al m + n O n N16– n ) materials have been prepared by gas-pressure sintering and post-hot-isostatic-press (HIP) annealing, using four powder mixtures of α-Si3N4, AlN, and either (i) CeO2, (ii) CeO2+ Y-α-SiAlON seed, (iii) CeO2+ Y2O3, or (iv) CeO2+ CaO. Cerium-containing CeAl(Si6– z Al z )(N10– z O z ) (JEM) phase, rather than Ce-α-SiAlON phase, forms in the sample with only CeO2, whereas a single-phase α-SiAlON generates in samples with dual doping (CeO2+ Y2O3 and CeO2+ CaO). On ultraviolet-light excitation, JEM gives one broad emission band with maximum at 465 nm and a shoulder at 498 nm; α-SiAlON shows an intense and broad emission band that peaks at 500 nm. The unusual long-wavelength emissions in JEM and α-SiAlON are due to increases in the nephelauxetic effect and the ligand-field splitting of the 5 d band, because the coordination of Ce3+ in JEM and α-SiAlON is nitrogen enriched.  相似文献   

19.
In this work, α-Al2O3:C crystals were grown by the edge-defined, film-fed growth method with different pulling rates. The influence of pulling rate on the optical, thermoluminescence (TL), and optically stimulated luminescence (OSL) properties of the as-grown α-Al2O3:C crystals was investigated. All the α-Al2O3:C crystals grown with different pulling rates show a single TL glow peak and an invariable blue emission band at 415 nm. With an increasing pulling rate in the 0.1–0.7 mm/min range, the absorption coefficient of optical absorption bands at 206 and 256 nm increased, the TL and OSL dose response improved, the TL peak shifted to higher temperatures, and the OSL decay rate increased. When the pulling rate is increased to 1 mm/min, the absorption coefficients of the bands at 206 and 256 nm, the TL temperature and intensity, the OSL intensity, and the decay rate declined. The TL and OSL dose response of the as-grown α-Al2O3:C crystals shows a linear–sublinear saturation characteristic. The pulling rates almost show no influence on the crystals' saturation dose. The α-Al2O3:C crystal grown with the pulling rate of 0.7 mm/min shows the best TL and OSL properties.  相似文献   

20.
Hexagonal boron nitride (hBN) thin films were deposited on silicon and quartz substrates using sequential exposures of triethylboron and N2/H2 plasma in a hollow‐cathode plasma‐assisted atomic layer deposition reactor at low temperatures (≤450°C). A non‐saturating film deposition rate was observed for substrate temperatures above 250°C. BN films were characterized for their chemical composition, crystallinity, surface morphology, and optical properties. X‐ray photoelectron spectroscopy (XPS) depicted the peaks of boron, nitrogen, carbon, and oxygen at the film surface. B 1s and N 1s high‐resolution XPS spectra confirmed the presence of BN with peaks located at 190.8 and 398.3 eV, respectively. As deposited films were polycrystalline, single‐phase hBN irrespective of the deposition temperature. Absorption spectra exhibited an optical band edge at ~5.25 eV and an optical transmittance greater than 90% in the visible region of the spectrum. Refractive index of the hBN film deposited at 450°C was 1.60 at 550 nm, which increased to 1.64 after postdeposition annealing at 800°C for 30 min. These results represent the first demonstration of hBN deposition using low‐temperature hollow‐cathode plasma‐assisted sequential deposition technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号