首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multivariate graphs are prolific across many fields, including transportation and neuroscience. A key task in graph analysis is the exploration of connectivity, to, for example, analyze how signals flow through neurons, or to explore how well different cities are connected by flights. While standard node‐link diagrams are helpful in judging connectivity, they do not scale to large networks. Adjacency matrices also do not scale to large networks and are only suitable to judge connectivity of adjacent nodes. A key approach to realize scalable graph visualization are queries: instead of displaying the whole network, only a relevant subset is shown. Query‐based techniques for analyzing connectivity in graphs, however, can also easily suffer from cluttering if the query result is big enough. To remedy this, we introduce techniques that provide an overview of the connectivity and reveal details on demand. We have two main contributions: (1) two novel visualization techniques that work in concert for summarizing graph connectivity; and (2) Graffinity, an open‐source implementation of these visualizations supplemented by detail views to enable a complete analysis workflow. Graffinity was designed in a close collaboration with neuroscientists and is optimized for connectomics data analysis, yet the technique is applicable across domains. We validate the connectivity overview and our open‐source tool with illustrative examples using flight and connectomics data.  相似文献   

2.
Providing tools that make visualization authoring accessible to visualization non‐experts is a major research challenge. Currently the most common approach to generating a visualization is to use software that quickly and automatically produces visualizations based on templates. However, it has recently been suggested that constructing a visualization with tangible tiles may be a more accessible method, especially for people without visualization expertise. There is still much to be learned about the differences between these two visualization authoring practices. To better understand how people author visualizations in these two conditions, we ran a qualitative study comparing the use of software to the use of tangible tiles, for the creation of bar charts. Close observation of authoring activities showed how each of the following varied according to the tool used: 1) sequences of action; 2) distribution of time spent on different aspects of the InfoVis pipeline; 3) pipeline task separation; and 4) freedom to manipulate visual variables. From these observations, we discuss the implications of the variations in activity sequences, noting tool design considerations and pointing to future research questions.  相似文献   

3.
We present an argument for using visual analytics to aid Grounded Theory methodologies in qualitative data analysis. Grounded theory methods involve the inductive analysis of data to generate novel insights and theoretical constructs. Making sense of unstructured text data is uniquely suited for visual analytics. Using natural language processing techniques such as parts‐of‐speech tagging, retrieving information content, and topic modeling, different parts of the data can be structured and semantically associated, and interactively explored, thereby providing conceptual depth to the guided discovery process. We review grounded theory methods and identify processes that can be enhanced through visual analytic techniques. Next, we develop an interface for qualitative text analysis, and evaluate our design with qualitative research practitioners who analyze texts with and without visual analytics support. The results of our study suggest how visual analytics can be incorporated into qualitative data analysis tools, and the analytic and interpretive benefits that can result.  相似文献   

4.
Patterns of words used in different text collections can characterize interesting properties of a corpus. However, these patterns are challenging to explore as they often involve complex relationships across many words and collections in a large space of words. In this paper, we propose a configurable colorfield design to aid this exploration. Our approach uses a dense colorfield overview to present large amounts of data in ways that make patterns perceptible. It allows flexible configuration of both data mappings and aggregations to expose different kinds of patterns, and provides interactions to help connect detailed patterns to the corpus overview. TextDNA, our prototype implementation, leverages the GPU to provide interactivity in the web browser even on large corpora. We present five case studies showing how the tool supports inquiry in corpora ranging in size from single document to millions of books. Our work shows how to make a configurable colorfield approach practical for a range of analytic tasks.  相似文献   

5.
The use of multiple coordinated views (MCV) in data visualization provides analytic power because it allows a person to explore data under a variety of different perspectives. Since this design pattern utilizes multiple visualizations and requires coordinated interactions across the views, a clever use of screen space is vital and many synchronized interface operations must be provided. Bringing this design pattern to tablet computers is challenging due to their small display size and the absence of keyboard and mouse input. In this article, we explain important design considerations for MCV visualization on tablets and describe a prototype MCV visualization system we have built for the iPad. The design is based on the principles of maximizing screen space for data presentation, promoting consistent interactions across visualizations, and minimizing occlusion from a person's hands.  相似文献   

6.
The analysis of paths in graphs is highly relevant in many domains. Typically, path‐related tasks are performed in node‐link layouts. Unfortunately, graph layouts often do not scale to the size of many real world networks. Also, many networks are multivariate, i.e., contain rich attribute sets associated with the nodes and edges. These attributes are often critical in judging paths, but directly visualizing attributes in a graph layout exacerbates the scalability problem. In this paper, we present visual analysis solutions dedicated to path‐related tasks in large and highly multivariate graphs. We show that by focusing on paths, we can address the scalability problem of multivariate graph visualization, equipping analysts with a powerful tool to explore large graphs. We introduce Pathfinder, a technique that provides visual methods to query paths, while considering various constraints. The resulting set of paths is visualized in both a ranked list and as a node‐link diagram. For the paths in the list, we display rich attribute data associated with nodes and edges, and the node‐link diagram provides topological context. The paths can be ranked based on topological properties, such as path length or average node degree, and scores derived from attribute data. Pathfinder is designed to scale to graphs with tens of thousands of nodes and edges by employing strategies such as incremental query results. We demonstrate Pathfinder's fitness for use in scenarios with data from a coauthor network and biological pathways.  相似文献   

7.
A recent trend in interactive modeling of 3D shapes from a single image is designing minimal interfaces, and accompanying algorithms, for modeling a specific class of objects. Expanding upon the range of shapes that existing minimal interfaces can model, we present an interactive image‐guided tool for modeling shapes made up of extruded parts. An extruded part is represented by extruding a closed planar curve, called base, in the direction orthogonal to the base. To model each extruded part, the user only needs to sketch the projected base shape in the image. The main technical contribution is a novel optimization‐based approach for recovering the 3D normal of the base of an extruded object by exploring both geometric regularity of the sketched curve and image contents. We developed a convenient interface for modeling multi‐part shapes and a method for optimizing the relative placement of the parts. Our tool is validated using synthetic data and tested on real‐world images.  相似文献   

8.
Movement ecologists study animals' movement to help understand their behaviours and interactions with each other and the environment. Data from GPS loggers are increasingly important for this. These data need to be processed, segmented and summarised for further visual and statistical analysis, often using predefined parameters. Usually, this process is separate from the subsequent visual and statistical analysis, making it difficult for these results to inform the data processing and to help set appropriate scale and thresholds parameters. This paper explores the use of highly interactive visual analytics techniques to close the gap between processing raw data and exploratory visual analysis. Working closely with animal movement ecologists, we produced requirements to enable data characteristics to be determined, initial research questions to be investigated, and the suitability of data for further analysis to be assessed. We design visual encodings and interactions to meet these requirements and provide software that implements them. We demonstrate these techniques with indicative research questions for a number of bird species, provide software, and discuss wider implications for animal movement ecology.  相似文献   

9.
We introduce MultiPiles, a visualization to explore time‐series of dense, weighted networks. MultiPiles is based on the physical analogy of piling adjacency matrices, each one representing a single temporal snapshot. Common interfaces for visualizing dynamic networks use techniques such as: flipping/animation; small multiples; or summary views in isolation. Our proposed ‘piling’ metaphor presents a hybrid of these techniques, leveraging each one's advantages, as well as offering the ability to scale to networks with hundreds of temporal snapshots. While the MultiPiles technique is applicable to many domains, our prototype was initially designed to help neuroscientists investigate changes in brain connectivity networks over several hundred snapshots. The piling metaphor and associated interaction and visual encodings allowed neuroscientists to explore their data, prior to a statistical analysis. They detected high‐level temporal patterns in individual networks and this helped them to formulate and reject several hypotheses.  相似文献   

10.
We present Lyra, an interactive environment for designing customized visualizations without writing code. Using drag‐and‐drop interactions, designers can bind data to the properties of graphical marks to author expressive visualization designs. Marks can be moved, rotated and resized using handles; relatively positioned using connectors; and parameterized by data fields using property drop zones. Lyra also provides a data pipeline interface for iterative, visual specification of data transformations and layout algorithms. Visualizations created with Lyra are represented as specifications in Vega, a declarative visualization grammar that enables sharing and reuse. We evaluate Lyra's expressivity and accessibility through diverse examples and studies with journalists and visualization designers. We find that Lyra enables users to rapidly develop customized visualizations, covering a design space comparable to existing programming‐based tools.  相似文献   

11.
We developed a visual analysis tool to support the verification, assessment, and presentation of alleged cases of plagiarism. The analysis of a suspicious document typically results in a compilation of categorized “finding spots”. The categorization reveals the way in which the suspicious text fragment was created from the source, e.g. by obfuscation, translation, or by shake and paste. We provide a three‐level approach for exploring the finding spots in context. The overview shows the relationship of the entire suspicious document to the set of source documents. A glyph‐based view reveals the structural and textual differences and similarities of a set of finding spots and their corresponding source text fragments. For further analysis and editing of the finding spot's assessment, the actual text fragments can be embedded side‐by‐side in the diffline view. The different views are tied together by versatile navigation and selection operations. Our expert reviewers confirm that our tool provides a significant improvement over existing static visualizations for assessing plagiarism cases.  相似文献   

12.
We introduce Papilio, a new visualization technique for visualizing permissions of real‐world Android applications. We explore the development of layouts that exploit the directed acyclic nature of Android application permission data to develop a new explicit layout technique that incorporates aspects of set membership, node‐link diagrams and matrix layouts. By grouping applications based on sets of requested permissions, a structure can be formed with partially ordered relations. The Papilio layout shows sets of applications centrally, the relations among applications on one side and application permissions, as the reason behind the existence of the partial order, on the other side. Using Papilio to explore a set of Android applications as a case study has led to new security findings regarding permission usage by Android applications.  相似文献   

13.
To understand how the immune system works, one needs to have a clear picture of its cellular compositon and the cells' corresponding properties and functionality. Mass cytometry is a novel technique to determine the properties of single‐cells with unprecedented detail. This amount of detail allows for much finer differentiation but also comes at the cost of more complex analysis. In this work, we present Cytosplore, implementing an interactive workflow to analyze mass cytometry data in an integrated system, providing multiple linked views, showing different levels of detail and enabling the rapid definition of known and unknown cell types. Cytosplore handles millions of cells, each represented as a high‐dimensional data point, facilitates hypothesis generation and confirmation, and provides a significant speed up of the current workflow. We show the effectiveness of Cytosplore in a case study evaluation.  相似文献   

14.
In this paper we introduce TimeArcs, a novel visualization technique for representing dynamic relationships between entities in a network. Force‐directed layouts provide a way to highlight related entities by positioning them near to each other Entities are brought closer to each other (forming clusters) by forces applied on nodes and connections between nodes. In many application domains, relationships between entities are not temporally stable, which means that cluster structures and cluster memberships also may vary across time. Our approach merges multiple force‐directed layouts at different time points into a single comprehensive visualization that provides a big picture overview of the most significant clusters within a user‐defined period of time. TimeArcs also supports a range of interactive features, such as allowing users to drill‐down in order to see details about a particular cluster. To highlight the benefits of this technique, we demonstrate its application to various datasets, including the IMDB co‐star network, a dataset showing conflicting evidences within biomedical literature of protein interactions, and collocated popular phrases obtained from political blogs.  相似文献   

15.
We propose an efficient method to model paper tearing in the context of interactive modeling. The method uses geometrical information to automatically detect potential starting points of tears. We further introduce a new hybrid geometrical and physical‐based method to compute the trajectory of tears while procedurally synthesizing high resolution details of the tearing path using a texture based approach. The results obtained are compared with real paper and with previous studies on the expected geometric paths of paper that tears.  相似文献   

16.
To understand how topology shapes the dynamics in excitable networks is one of the fundamental problems in network science when applied to computational systems biology and neuroscience. Recent advances in the field discovered the influential role of two macroscopic topological structures, namely hubs and modules. We propose a visual analytics approach that allows for a systematic exploration of the role of those macroscopic topological structures on the dynamics in excitable networks. Dynamical patterns are discovered using the dynamical features of excitation ratio and co‐activation. Our approach is based on the interactive analysis of the correlation of topological and dynamical features using coordinated views. We designed suitable visual encodings for both the topological and the dynamical features. A degree map and an adjacency matrix visualization allow for the interaction with hubs and modules, respectively. A barycentric‐coordinates layout and a multi‐dimensional scaling approach allow for the analysis of excitation ratio and co‐activation, respectively. We demonstrate how the interplay of the visual encodings allows us to quickly reconstruct recent findings in the field within an interactive analysis and even discovered new patterns. We apply our approach to network models of commonly investigated topologies as well as to the structural networks representing the connectomes of different species. We evaluate our approach with domain experts in terms of its intuitiveness, expressiveness, and usefulness.  相似文献   

17.
Discrete conformal mappings of planar triangle meshes, also known as the As‐Similar‐As‐Possible (ASAP) mapping, involve the minimization of a quadratic energy function, thus are very easy to generate and are popular in image warping scenarios. We generalize this classical mapping to the case of quad meshes, taking into account the mapping of the interior of the quad, and analyze in detail the most common case ‐ the unit grid mesh. We show that the generalization, when combined with barycentric coordinate mappings between the source and target polygons, spawns an entire family of new mappings governed by quadratic energy functions, which allow to control quite precisely various effects of the mapping. This approach is quite general and applies also to arbitrary planar polygon meshes. As an application of generalized ASAP mappings of the unit grid mesh, we demonstrate how they can be used to warp digital photographs to achieve a variety of effects. One such effect is modifying the perspective of the camera that took a given photograph (without moving the camera). A related, but more challenging, effect is re‐photography ‐ warping a contemporary photograph in order to reproduce the camera view present in a vintage photograph of the same scene ‐ taken many years before with a different camera from a different viewpoint. We apply the generalized ASAP mapping to these images, discretized to a unit grid. Using a quad mesh (as opposed to a triangle mesh) permits biasing towards affine maps of the unit squares. This allows the introduction of an As‐Affine‐As‐Possible (AAAP) mapping for a good approximation of the homographies present in these warps, achieving quite accurate results. We demonstrate the advantages of the AAAP mapping on a variety of synthetic and real‐world examples.  相似文献   

18.
Rigging is a core element in the process of bringing a 3D character to life. The rig defines and delimits the motions of the character and provides an interface for an animator with which to interact with the 3D character. The quality of the rig has a key impact on the expressiveness of the character. Creating a usable, rich, production ready rig is a laborious task requiring direct intervention by a trained professional because the goal is difficult to achieve with fully automatic methods. We propose a semi‐automatic rigging editing framework which eases the need for manual intervention while maintaining an important degree of control over the final rig. Starting by automatically generated base rig, we provide interactive operations which efficiently configure the skeleton structure and mesh skinning.  相似文献   

19.
Stylizing photos, to give them an antique or artistic look, has become popular in recent years. The available stylization filters, however, are usually created manually by artists, resulting in a narrow set of choices. Moreover, it can be difficult for the user to select a desired filter, since the filters’ names often do not convey their functions. We investigate an approach to photo filtering in which the user provides one or more keywords, and the desired style is defined by the set of images returned by searching the web for those keywords. Our method clusters the returned images, allows the user to select a cluster, then stylizes the user's photos by transferring vignetting, color, and local contrast from that cluster. This approach vastly expands the range of available styles, and gives each filter a meaningful name by default. We demonstrate that our method is able to robustly transfer a wide range of styles from image collections to users’ photos.  相似文献   

20.
Today it is quite common for people to exchange hundreds of comments in online conversations (e.g., blogs). Often, it can be very difficult to analyze and gain insights from such long conversations. To address this problem, we present a visual text analytic system that tightly integrates interactive visualization with novel text mining and summarization techniques to fulfill information needs of users in exploring conversations. At first, we perform a user requirement analysis for the domain of blog conversations to derive a set of design principles. Following these principles, we present an interface that visualizes a combination of various metadata and textual analysis results, supporting the user to interactively explore the blog conversations. We conclude with an informal user evaluation, which provides anecdotal evidence about the effectiveness of our system and directions for further design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号