首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
一种基于词袋模型的图像分类方法   总被引:1,自引:0,他引:1       下载免费PDF全文
采用词袋模型(BoW)对图像进行分类,并针对传统词袋模型存在的不足进行了改进,提出了一种特征软量化的方式。软赋值量化通过将局部显著特征量化(SIFT)为与其距离最近的若干个视觉单词,并对其进行加权,由此保存特征空间中的距离信息,从而解决硬赋值量化造成的特征空间信息损失问题。通过在Caltech 101数据库进行实验,验证了本文方法的有效性,实验结果表明,该方法能够大幅度提高图像分类的性能。  相似文献   

2.
本文在传统词袋模型的基础上,结合人的视觉特性,提出了一种基于视觉显著度与词袋模型的图像分类方法。算法首先计算图像的视觉显著度,然后根据图像的视觉显著度对图像计算视觉单词的加权直方图,然后使用视觉单词的加权直方图表示图像。通过在Caltech 101数据库进行实验,验证了本文方法的有效性,实验结果表明,该方法能够大幅度提高图像分类的性能。  相似文献   

3.
一种基于词袋模型的图像优化分类方法   总被引:1,自引:0,他引:1       下载免费PDF全文
该文应用词袋模型对图像进行分类,并针对传统词袋模型存在的不足进行改进,提出了一种基于兴趣区域(Region Of Interest, ROI)提取以及金字塔匹配原理的优化方法。首先对训练图像进行ROI提取,对得到的ROI区域进行密集尺度不变特征变换(Scale-Invariant Feature Transform, SIFT)特征的抽取和描述并生成视觉词典,由此产生的视觉词典更能精确的描述图像的特征,且能够抵抗多变的位置信息及背景信息的影响。其次应用金字塔匹配原理对图像进行基于视觉词典的直方图表示,代入支持向量机(Support Vector Machine, SVM)分类器进行分类。通过对Caltech 101和Caltech 256两个数据库进行实验,结果表明该方法较传统方法提高了分类的正确率,且能够在训练图像较少的情况下达到良好的分类效果。最后通过与现有同类方法的比较验证了该方法的优越性。  相似文献   

4.
目前在图像检索领域,由于视觉字典其性能突出,已成为图像检索领域构建视觉词典的主流方法。但传统的视觉字典方法存在运行时间效率低、内存消耗大等缺点。因此本文采用ROOTSift算法提取图像的特征点并利用高效的K-means聚类算法建立支持动态扩充的随机视觉字典。该方法基于视觉字典构建视觉词汇直方图和倒排序索引文件,并对视觉词重新分配权重以提高检索命中率。最后利用欧氏距离法查询完成相似性匹配。试验结果表明该方法能提高图像检索的准确率,对大规模的图像检索能够达到很好的检索质量。  相似文献   

5.
王玲  吕江靖  程诚  周曦 《电视技术》2015,39(17):112-115
针对人脸图像因受表情、光照、角度等因素影响,导致人脸识别率较低的状况,提出了一种基于视觉词袋模型的人脸识别方法。该方法首先对图像进行分块并提取局部特征,其次利用训练样本的所有局部特征训练全局的混合高斯模型,然后以此为初始化训练单张图像的混合高斯模型,生成该图像全局特征向量,最后用PLDA进行人脸识别。通过在LFW数据库上进行实验,结果显示本方法的识别率高于传统的特征提取方法,证明了本方法具有更强的识别性能。  相似文献   

6.
采用改进词袋模型的空中目标自动分类   总被引:2,自引:0,他引:2       下载免费PDF全文
为了解决飞机、直升机、导弹等3类空中目标图像的自动分类问题,提出了一种基于改进词袋模型的空中目标识别方法。首先采集3类多个型号的空中目标灰度图像并分割提取出目标,接着利用稠密采样方法进行SIFT特征提取,然后用模糊C均值聚类方法,对空中目标图像的SIFT特征进行聚类,得到大量空中目标图像的视觉单词。最后用视觉单词直方图训练支持向量机分类器,完成空中目标的自动分类。仿真实验表明,文中提出的算法能准确区分空中目标类别,性能优于传统的采用K均值聚类的词袋模型,且优于仿射矩。  相似文献   

7.
基于图正则化局部特征编码算法的图像分类方法   总被引:1,自引:0,他引:1       下载免费PDF全文
杨赛  赵春霞  胡彬  陈峰 《电子学报》2017,45(8):1882-1887
为了解决经典局部特征编码方法会产生相似局部特征之间编码系数不一致的问题,本文提出一种图正则化局部特征编码算法.该算法在对初始编码矢量所定义的能量化函数中引入正则化项,保证空间上相邻外观上相似的局部特征之间的编码矢量尽可能一致.MSRcv2、Caltech101、Scene 15以及Indoor 67四个公开数据集上的实验结果表明本文方法能够提高硬分配、软分配、稀疏编码、局部约束线性编码以及局部软分配五种经典编码方法的性能,并且基于本文编码算法的图像分类方法在上述四个公开数据集上的平均分类正确率分别达到了91.13%、76.02%、83.76%、44.78%.  相似文献   

8.
9.
文章提出了一种基于改进马尔科夫分类模型的高光谱图像分类方法。文中具体阐述了该分类模型的具体实现流程。首先通过子空间模型将高光谱图像投影到低维的子空间中,对图像进行预分类,然后结合改进的马尔科夫分类模型对预分类结果进行细化,实现了对高光谱图像的分类。  相似文献   

10.
即时定位与地图构建(SLAM)是解决移动机器人在未知非结构化环境中自主导航与控制的关键,一个完整的SLAM系统包括传感器数据处理、位姿估计、构建地图、回环检测四个部分。其中回环检测机制是解决移动机器人的闭环重定位,提高SLAM系统鲁棒性的重要环节。该研究提出一种基于ORB词袋模型的SLAM系统框架,通过研究与分析了使用FLANN算法选取关键帧与匹配帧间特征点,ORB特征描述子对检测速度的提高,通过k-means++算法对特征点进行训练生成含有视觉单词的词袋模型,使用高斯金字塔的直方图交叉核的SVM分类器,使用e PNP算法的增量式帧间位姿估计,回环检测重定位机制等环节,实现了单目视觉SLAM系统的初始化与位姿优化,实现了在丢帧状况下通过词袋模型进行重定位。最后通过搭建实验平台和标准数据集的测试得到的数据结果表明,基于ORB词袋模型的SLAM系统,具有良好的实时性,能够有效提高SLAM系统的重定位准确性,增强了系统的鲁棒性。  相似文献   

11.
云模型相似度方法是对象相似性分析的一种重要方法.为提高图像分类的准确性,提出一种基于云模型相似度的图像分类方法.首先给出图像云模型的定义,然后根据云模型方法的逆向云算法对图像云模型特征进行数字特征计算,最后引入云模型相似性测度方法对图像云模型相似性进行测算并确定图像分类.仿真结果表明,文章所提方法可准确地对图像进行分类,且计算效率较高.  相似文献   

12.
针对图像聚类问题,提出了一种基于图像空间关系的聚类方法,采用场模型描述图像之间的空间关系,利用K-近邻思想构建图像邻域系统,聚类过程中无需手动标记特征表示的图像类别信息,只需要给定初始类别数,通过条件迭代算法(ICM)对图像进行聚类。该文通过实验分析了图像样本大小、图像特征维数、图像特征类型、初始类别标签对聚类结果的影响,通过与多种经典聚类算法进行对比,实验结果充分验证了该方法的有效性。  相似文献   

13.
双目视觉是利用机器视觉进行障碍物检测的研究热点。针对双目视频不同步,导致立体匹配不精准的问题,提出了一种基于图像处理的双目校准算法。算法首先根据道路的先验特征模型,建立视觉校准的敏感区域,以减小计算量。然后对图像的灰度进行聚类,并通过边缘检测和形态学处理来检测道路中的目标物,从而确定动目标与固定物的距离,搜索同步视频帧,实现双目校准。室外真实场景的实验结果表明,该算法可以较好地校准双目视觉,从而使立体匹配更精准。  相似文献   

14.
为了有效改善高光谱图像数据分类的精确度,减少对大数目数据集的依赖,在原型空间特征提取方法的基础上提出一种基于加权模糊C均值算法改进型原型空间特征提取方案。该方案通过加权模糊 C 均值算法对每个特征施加不同的权重,从而保证提取后的特征含有较高的信息量。实验结果表明,与业内公认的原型空间提取算法相比 该方案在相对较小的数据集下,其性能仍具有较为理想的稳定性,且具有相对较高的分类精度,这样子就大大降低了对数据集样本数量的依赖性,同时改善了原型空间特征方法的效率。  相似文献   

15.
本文提出了基于支持向量机的脑部MR图像细分类器,采用纹理与形状特征相结合方式表达图像,应用StARMiner算法对特征进行选择和计算特征加权系数,最后用支持向量机理论设计分类器对脑部图像进行精细分类。经反复实验优化各参数,粗略分类率可以达到92.10%。细分类可应用于特定人体部位图像的检索系统,以检索出更精确的图像,并且缩减检索空间,提高检索效率。  相似文献   

16.
图像分割是图像处理中是一个重要问题.在FCM方法的基础上,对其参数m和算法的运行速度进行改进,实验结果表明,该改进在优化算法的速度和分割效果上都有显著的提高.  相似文献   

17.
在高光谱图像分类中,丰富的数据提升了其地物 识别能力。然而,由于样本特 征数大且有标记训练样本点少,导致“维度灾难”问题。本文提出一种基于无监督特征选择 的高光谱图像分类方 法,该方法同时考虑数据的流形嵌入映射和稀疏表达,将特征选择问题转化为一个优 化问题,数据的流形嵌入和稀疏表达作为约束项加入目标函数。设计了三个目标函 数,第一个目标函数描述流形学习的局部性原则,第二个目标函数将原始样本点回归 到低维嵌入空间,第三个目标函数对回归系数进行正则化。针对目标函数非凸的问 题,用迭代的方法来解这个约束优化问题,给出了解该优化问题的算法。优选特征用 于参与后续的分类识别任务。在真实的高光谱数据集上的实验表明,新方法能够提高 分类的精度。  相似文献   

18.
The bag of visual words (BOW) model is an efficient image representation technique for image categorization and annotation tasks. Building good visual vocabularies, from automatically extracted image feature vectors, produces discriminative visual words, which can improve the accuracy of image categorization tasks. Most approaches that use the BOW model in categorizing images ignore useful information that can be obtained from image classes to build visual vocabularies. Moreover, most BOW models use intensity features extracted from local regions and disregard colour information, which is an important characteristic of any natural scene image. In this paper, we show that integrating visual vocabularies generated from each image category improves the BOW image representation and improves accuracy in natural scene image classification. We use a keypoint density-based weighting method to combine the BOW representation with image colour information on a spatial pyramid layout. In addition, we show that visual vocabularies generated from training images of one scene image dataset can plausibly represent another scene image dataset on the same domain. This helps in reducing time and effort needed to build new visual vocabularies. The proposed approach is evaluated over three well-known scene classification datasets with 6, 8 and 15 scene categories, respectively, using 10-fold cross-validation. The experimental results, using support vector machines with histogram intersection kernel, show that the proposed approach outperforms baseline methods such as Gist features, rgbSIFT features and different configurations of the BOW model.  相似文献   

19.
待修复像素优先级的计算及最佳匹配块的确定是基于纹理合成图像修复方法的两个基本环节,传统方法不仅难于确定优先级计算中的置信度,而且难于搜索到最佳匹配块.提出了一种基于加权优先级和分类匹配的图像修复方法,该方法在优先级模型中,引入指数函数和正规化函数分别优化置信度和数据项,使得计算的优先级更加客观,从而使修复顺序更加合理.基于此,将结构信息作为搜索匹配块的一个度量因子,采用分类筛选方式,选取最佳匹配块.实验结果表明,所提方法在获得良好修复效果的前提下缩短了修复时间.  相似文献   

20.
针对基于传统卷积神经网络模型的高光谱图像分类算法细节表现力不强及网络结构过于复杂的问题,设计了一种基于多尺度近端特征拼接网络的高光谱图像分类方法.通过引入多尺度滤波器和空洞卷积,在保持模型轻量化的同时可以获取更丰富的空间-光谱判别特征,并提出利用卷积神经网络近端特征间的相互联系进一步增强细节表现力.在3个基准高光谱图像...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号