首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrostatic model for nanocrystal memories is used to illustrate the fundamental difference of the metal nanocrystal memory in low-voltage program/erase (P/E) operations in comparison with semiconductor nanocrystal and trap-based memories. Due to repulsion of potential contours inside conductors, the metal nanocrystals will significantly enhance the electric field between the nanocrystal and the sensing channel set up by the control gate bias and, hence, can achieve much higher efficiency in low-voltage P/E. On the other hand, the electric field originated from the stored charge will only be slightly different for metal and semiconductor nanocrystal cases. We presented the electrostatic models by both approximate analytical formulation and three-dimensional numerical simulation in a nanocrystal array. Operations of P/E and read disturbance were analyzed for the cases of homogeneous charge distribution, silicon, and metal nanocrystals. In the P/E condition of +5/-5 V, the metal nanocrystal memory offers around 1.6 times higher peak fields than Si counterparts and almost three times higher than that from the one-dimensional model for homogeneous charge distribution. The field enhancement factor suggests the design criteria of oxide thickness, nanocrystal size, and spacing. The advantage of asymmetric field enhancement of metal nanocrystals will be even more prominent when high-K gate dielectrics are employed.  相似文献   

2.
A model describing the transport and injection of carriers into a heterophase system (silicon substrate)/(silicon nanocrystals)/(electrolyte) under excitation of electroluminescence is proposed. The main fraction of current passes from the electrolyte directly into a substrate by-passing the nanocrystals. Electromechanical processes at the electrolyte-substrate interface produce the electroactive particles, which inject one or both types of carriers in macro-and nanocrystals, respectively. For the bipolar injection, the nanocrystals play the role of catalyst in the exothermal reaction of charge exchange between the electroactive particles, which possess the opposite charges. In this case, the particles transfer the energy to nanocrystals, which they accumulated in the process of their formation. A fraction of this energy is released by the radiative recombination. The resulting efficient visible electroluminescence is weakly dependent on the doping level and conduction type of the initial silicon.  相似文献   

3.
制备了包含双层半导体和金属纳米晶的MOS电容结构,研究了其在非挥发性存储器领域的应用。利用真空电子束蒸发技术,在二氧化硅介质中得到了半导体硅纳米晶和金属镍纳米晶。与包含单层纳米晶的MOS电容相比,这种包含双层异质纳米晶的MOS电容显示出更大的存储能力,且保留性能得到改善。说明顶层的金属纳米晶作为一层额外的电荷俘获层可以通过直接隧穿机制进一步延长保留时间和提高平带电压漂移量。  相似文献   

4.
An MOS (metal oxide semiconductor) capacitor structure with double-layer heterogeneous nanocrystals consisting of semiconductor and metal embedded in a gate oxide for nonvolatile memory applications has been fabricated and characterized. By combining vacuum electron-beam co-evaporated Si nanocrystals and self-assembled Ni nanocrystals in a SiO_2 matrix, an MOS capacitor with double-layer heterogeneous nanocrystals can have larger charge storage capacity and improved retention characteristics compared to one with single-layer nanocrystals. The upper metal nanocrystals as an additional charge trap layer enable the direct tunneling mechanism to enhance the flat voltage shift and prolong the retention time.  相似文献   

5.
《Solid-state electronics》2006,50(7-8):1310-1314
Charge and discharge phenomena of Germanium nanocrystals fabricated by low pressure chemical vapor deposition are investigated by means of Capacitance–Voltage and capacitance decay measurements. The study shows fast programming and erasing times as compared with conventional devices. It is shown that the charge saturation depends on the gate voltage stress in the low electric field regime. For high gate voltages, a saturation of the stored charge is obtained, indicating that the density of trapped carriers in Ge nanocrystals is limited and depends only on the dots size. Capacitance decay measurements exhibits a very long retention time for holes as compared with silicon nanocrystal memories. This is mainly due to the barrier height for holes at the nc-Ge/ 2 interface. A model for simulation of the retention kinetics has been developed and allows to extract the band alignment of the nc-Ge/SiO2/Si system. The simulation results are then used to determine the band gap energy of Ge nanocrystals. Finally, it is shown that Ge nanocrystals are very good candidates for P-type Metal Oxide Semiconductor nonvolatile memories.  相似文献   

6.
We propose double-gate silicon nanocrystal memories (NCMs) with ultrathin body structure. Double-gate NCMs experimentally show larger threshold voltage shift (/spl Delta/V/sub th/) and longer charge retention time than single-gate NCMs. These superior behaviors in double-gate NCMs are explained by the increase in the body potential due to electrons in one side nanocrystals that prevent electrons in the other side nanocrystals from escaping. Thinner transistor body enhances the mutual influence between electrons in both sides. It is also found that the endurance characteristics are also improved by the reduced potential difference in the tunnel oxide.  相似文献   

7.
The method of charge deep-level transient spectroscopy (Q-DLTS) is used to study and compare the ejection of charge carriers from silicon nanocrystals (NCs) located in an ordered or random way in the SiO2 matrix. It is shown that, in all cases, this ejection is a thermally activated process. The parameters of energy barriers characterizing the processes of ejection of charge carriers from the levels of nanocrystals in the layers NCs:SiO2 before (random distribution) and after their modification by irradiation with high-energy ions (ordered distribution of nanocrystals) are determined. It is found that the activation energies for ejection of charge carriers from nanocrystals and the size of nanocrystals estimated from the difference between energies of two levels observed by the Q-DLTS method decrease as the ion fluence is increased. The density of nanocrystals observed by the Q-DLTS method decreases by approximately an order of magnitude as a result of irradiation with fluence of 1012–1013 cm−2 in comparison with an initial unirradiated structure; this decrease is due to formation of conducting chains of nanocrystals in tracks.  相似文献   

8.
Liu  Y. Chen  T.P. Tse  M.S. Ho  H.C. Lee  K.H. 《Electronics letters》2003,39(16):1164-1166
MOS structure with Si nanocrystals embedded in the gate oxide close to the gate has a much larger capacitance compared to a similar MOS structure without the nanocrystals. However, charge trapping in the nanocrystals reduces the capacitance dramatically, and after most of the nanocrystals are charged up the capacitance is much smaller than that of the MOS structure without nanocrystals. An equivalent-capacitance model is proposed to explain the phenomena observed.  相似文献   

9.
通过简单旋涂方法,制备了一种基于硫化铅(PbS)纳米晶与聚乙烯基咔唑(PVK)的有机/无机复合薄膜电双稳器件,并对所制备的器件进行性能测试及其电荷传输机制研究。首先采用热注入的方法制备了尺寸均一的立方形PbS纳米晶,然后将PbS纳米晶与PVK聚合物混合作为活性层材料,制备了有机/无机复合薄膜电双稳器件。该器件展示了良好的电双稳特性并且可以实现稳定的“读-写-读-擦”操作。器件的最大电流开关比能够达到104。并进一步对器件在正向电压下的I-V曲线进行了理论拟合,发现在不同电流传导状态下,器件符合不同的电传导模型。进而分析了该电双稳器件中的电荷传输机制,认为在电场的作用下,发生在纳米晶与聚合物之间的电场诱导电荷转移是产生电双稳特性的主要原因。  相似文献   

10.
Core/shell tetrapods synthesized from CdSe and CdTe exhibit a type II band offset that induces separation of charge upon photoexcitation and localizes carriers to different regions of the tetrahedral geometry. CdSe/CdTe nanocrystals immobilized on oleylamine‐functionalized reduced graphene oxide (rGO) sheets can be homogeneously mixed with an organic dye (PCDTBT) to form donor–acceptor dispersed heterojunctions and exhibit a high power conversion efficiency of ~3.3% in solar cell devices. The near‐IR light absorbing type II nanocrystals complement the absorption spectrum of the visible light‐absorbing organics. The high efficiency is attributed to the amine‐functionalized rGO sheets, which allow intimate contact with the nanocrystals and efficient dispersal in the organic matrix, contributing to highly efficient charge separation and transfer at the nanocrystal, rGO, and polymer interfaces.  相似文献   

11.
The absorption, photoluminescence, and photoluminescence excitation spectra of CdS nanocrystals formed by the Langmuir–Blodgett method are explored. Features of the absorption and photoluminescence excitation spectra defined by optical transitions in the matrix and nanocrystals are identified. The efficiency of electronic excitation transfer from an organic matrix to nanocrystals is studied. It is shown that charge carriers efficiently transfer from the matrix to electron and hole size-quantization levels in nanocrystals and to acceptor defect levels in the band gap of nanocrystals. A large Stokes shift defined by fine exciton structure (bright and dark excitons) is observed. The shift is in the range 140–220 meV for nanocrystals 2.4 and 2.0 nm in radius.  相似文献   

12.
The photoluminescence and electrical properties are compared for silicon-oxide layers containing Si nanocrystals and having different Si content. The oxide was deposited by co-sputtering of silicon dioxide and silicon with the subsequent annealing for the formation of nanocrystals. Excess Si content in the layer varies along the sample from 6 to 74 vol %. It is found that a charge magnitude determined from the flat-band voltage has a pronounced peak for the excess Si content of about 26%, the largest charge correlating with the highest photoluminescence intensity. The further increase in the excess Si content in oxide leads to a decrease in both the oxide charge and the photoluminescence intensity and to the appearance of percolation conductivity.  相似文献   

13.
Heterogeneous floating-gates consisting of metal nanocrystals and silicon nitride (Si/sub 3/N/sub 4/) for nonvolatile memory applications have been fabricated and characterized. By combining the self-assembled Au nanocrystals and plasma-enhanced chemical vapor deposition (PECVD) nitride layer, the heterogeneous-stack devices can achieve enhanced retention, endurance, and low-voltage program/erase characteristics over single-layer nanocrystals or nitride floating-gate memories. The metal nanocrystals at the lower stack enable the direct tunneling mechanism during program/erase to achieve low-voltage operation and good endurance, while the nitride layer at the upper stack works as an additional charge trap layer to enlarge the memory window and significantly improve the retention time. The write/erase time of the heterogeneous stack is almost the same as that of the single-layer metal nanocrystals. In addition, we could further enhance the memory window by stacking more nanocrystal/nitride heterogeneous layers, as long as the effective oxide thickness from the control gate is still within reasonable ranges to control the short channel effects.  相似文献   

14.
The effect of applied electric field on the electronic properties of spherical ZnSe/ZnS core/shell nanocrystals of experimentally relevant size is investigated by the atomistic tight-binding theory. Using this model, the calculations show that a range of electronic properties, including the single-particle spectra, atomistic characters, charge densities, excitonic energies, ground-state coulomb energies, overlaps of the electron and hole wave functions and oscillation strengths, all depend on the strengths of the applied electric field. The spatial distributions of the electron and hole wave functions are induced by the applied electric field. The analysis demonstrates a clear manipulation of the electronic properties of ZnSe/ZnS core/shell nanocrystals by introducing and varying the applied electric field strengths. According to the comprehensive investigations, I suppose that these atomistic computations will be of prospective help for experimental works concentrated on the new optoelectronic devices based on the applied electric field.  相似文献   

15.
In nature, charge recombination in light‐harvesting reaction centers is minimized by efficient charge separation. Here, it is aimed to mimic this by coupling dye‐sensitized TiO2 nanocrystals to a decaheme protein, MtrC from Shewanella oneidensis MR‐1, where the 10 hemes of MtrC form a ≈7‐nm‐long molecular wire between the TiO2 and the underlying electrode. The system is assembled by forming a densely packed MtrC film on an ultra‐flat gold electrode, followed by the adsorption of approximately 7 nm TiO2 nanocrystals that are modified with a phosphonated bipyridine Ru(II) dye (RuP). The step‐by‐step construction of the MtrC/TiO2 system is monitored with (photo)electrochemistry, quartz‐crystal microbalance with dissipation (QCM‐D), and atomic force microscopy (AFM). Photocurrents are dependent on the redox state of the MtrC, confirming that electrons are transferred from the TiO2 nanocrystals to the surface via the MtrC conduit. In other words, in these TiO2/MtrC hybrid photodiodes, MtrC traps the conduction‐band electrons from TiO2 before transferring them to the electrode, creating a photobioelectrochemical system in which a redox protein is used to mimic the efficient charge separation found in biological photosystems.  相似文献   

16.
Electroluminescent structures that emit in the visible region of the spectrum and are based on porous silicon (por-Si) formed on the p-Si substrate electrolytically using an internal current source are fabricated. The photoluminescent and electroluminescent properties, as well as the current-and capacitance-voltage characteristics of the structures are studied. Electroluminescence is observed only if the forward bias voltage is applied to the structure; the electroluminescence mechanism is based on the injection and is related to the radiative recombination of electrons and holes in quantum-dimensional Si nanocrystals. The injection of holes is controlled by the condition of their accumulation in the space-charge region of p-Si and by a comparatively low concentration of electronic states at the por-Si/p-Si interface. The charge transport in por-Si is caused by the direct tunneling of charge carriers between the quantum-mechanical levels, which is ensured by an appreciable number of quantum-dimensional Si nanocrystals. The leakage currents are low as a result of a small variance in the sizes of Si nanocrystals and the absence of comparatively large nanocrystals.  相似文献   

17.
The transport phenomena in Metal-Oxide-Semiconductor (MOS) structures having silicon nanocrystals (Si-NCs) inside the dielectric layer has been investigated by high frequency Capacitance-Voltage (C-V) method and the Deep-Level Transient Spectroscopy (DLTS). For the reference samples without Si-NCs, we observe a slow electron trap for a large temperature range, which is probably a response of a series electron traps having a very close energy levels. A clear series of electron traps are evidenced in DLTS spectrum for MOS samples with Si-NCs. Their activation energies are comprised between 0.28 eV and 0.45 eV. Moreover, we observe in this DLTS spectrum, a single peak that appears at low temperature which we attributed to Si-NCs response. In MOS structure without Si-NCs, the conduction mechanism is dominated by the thermionic fast emission/capture of charge carriers from the highly doped polysilicon layer to Si-substrate through interface trap-states. However, at low temperature, the tunneling of charge carriers from highly Poly-Si to Si-substrate trough the trapping/detrapping mechanism in the Si-NCs contributed to the conduction mechanism for MOS with Si-NCs. These results are helpful to understand the principle of charge transport of MOS structures having a Si-NCs in the SiOx = 1.5 oxide matrix.  相似文献   

18.
The authors fabricate the hafnium silicate nanocrystal memory for the first time using a very simple sol-gel-spin-coating method and 900 /spl deg/C 1-min rapid thermal annealing (RTA). From the TEM identification, the nanocrystals are formed as the charge trapping layer after 900 /spl deg/C 1-min RTA and the size is about 5 nm. They demonstrate the composition of nanocrystal is hafnium silicate from the X-ray-photoelectron-spectroscopy analysis. They verify the electric properties in terms of program/erase (P/E) speed, charge retention, and endurance. The sol-gel device exhibits the long charge retention time of 10/sup 4/ s with only 6% charge loss, and good endurance performance for P/E cycles up to 10/sup 5/.  相似文献   

19.
《Organic Electronics》2014,15(8):1767-1772
The charge storage behavior of a floating gate memory device using carbon nanotube-CdS nanostructures embedded in Bombyx mori silk protein matrix has been demonstrated. The capacitance – voltage characteristics in ITO/CNT–CdS-silk composite/Al device exhibits a clockwise hysteresis behavior due to the injection and storage of holes in the quantized valence band energy levels of CdS nanocrystals. The enhanced charge injection resulting in increase in memory window is observed at higher sweeping voltages. Nearly frequency independent hysteresis width over a wide range of 100 kHz–2.0 MHz, indicates its origin due to the charge storage in nanocrystals. The memory behavior of carbon nanotube–CdS nanostructures/silk nanocomposite devices has also been demonstrated on polyethylene terephthalate substrates, which may provide the way for flexible, transparent and printable electronic devices.  相似文献   

20.
张敏  丁士进  陈玮  张卫 《微电子学》2007,37(3):369-373
金属纳米晶具有态密度高、费米能级选择范围广以及无多维载流子限制效应等优越性,预示着金属纳米晶快闪存储器在下一代闪存器件中具有很好的应用前景。从金属纳米晶存储器的工作原理、纳米晶的制备方法、以及新型介质材料和电荷俘获层结构等方面,对金属纳米晶存储器近年来的研究进展进行了总结。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号