首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present in this paper an efficient and accurate low‐order solid‐shell element formulation for analyses of large deformable multilayer shell structures with non‐linear materials. The element has only displacement degrees of freedom (dofs), and an optimal number of enhancing assumed strain (EAS) parameters to pass the patch tests (both membrane and out‐of‐plane bending) and to remedy volumetric locking. Based on the mixed Fraeijs de Veubeke‐Hu‐Washizu (FHW) variational principle, the in‐plane and out‐of‐plane bending behaviours are improved and the locking associated with (nearly) incompressible materials is avoided via a new efficient enhancement of strain tensor. Shear locking and curvature thickness locking are resolved effectively by using the assumed natural strain (ANS) method. Two non‐linear 3‐D constitutive models (Mooney–Rivlin material and hyperelastoplastic material at finite strain) are applied directly without requiring the enforcement of the plane‐stress assumption. In particular, we give a simple derivation for the hyperelastoplastic model using spectral representations. In addition, the present element has a well‐defined lumped mass matrix, and provides double‐side contact surfaces for shell contact problems. With the dynamics referred to a fixed inertial frame, the present element can be used to analyse multilayer shell structures undergoing large overall motion. Numerical examples involving static analyses and implicit/explicit dynamic analyses of multilayer shell structures with both material and geometric non‐linearities are presented, and compared with existing results obtained from other shell elements and from a meshless method. It is shown that elements that did not pass the out‐of‐plane bending patch test could not provide accurate results, as compared to the present element formulation, which passed the out‐of‐plane bending patch test. The present element proves to be versatile and efficient in the modelling and analyses of general non‐linear composite multilayer shell structures. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
3.
In the present contribution we propose an optimal low‐order versatile partial hybrid stress solid‐shell element that can be readily employed for a wide range of geometrically linear elastic structural analyses, that is, from shell‐like isotropic structures to multilayer anisotropic composites. This solid‐shell element has eight nodes with only displacement degrees of freedom and only a few internal parameters that provide the locking‐free behavior and accurate interlaminar shear stress resolution through the element thickness. These elements can be stacked on top of each other to model multilayer composite structures, fulfilling the interlaminar shear stress continuity at the interlayer surfaces and zero traction conditions on the top and bottom surfaces of composite laminates. The element formulation is based on the modified form of the well‐known Fraeijs de Veubeke–Hu–Washizu multifield variational principle with enhanced assumed strains formulation and assumed natural strains formulation to alleviate the different types of locking phenomena in solid‐shell elements. The distinct feature of the present formulation is its ability to accurately calculate the interlaminar shear stress field in multilayer structures, which is achieved by the introduction of the assumed interlaminar shear stress field in a standard enhanced assumed strains formulation based on the Fraeijs de Veubeke–Hu–Washizu principle. The numerical testing of the present formulation, employing a variety of popular numerical benchmark examples related to element patch test, convergence, mesh distortion, shell and laminated composite analyses, proves its accuracy for a wide range of structural analyses.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
In Part I of the paper, a hybrid‐stress‐assumed natural strain eight‐node solid‐shell element immune to shear, membrane, trapezoidal, thickness and dilatational lockings has been developed. Moreover, the element computational cost is reduced by enforcing admissible sparsity in the flexibility matrix. In this part of the paper, the solid‐shell element is generalized to a piezoelectric solid‐shell element. Using the two solid‐shell elements, smart structures with segmented piezoelectric sensors and actuators can be conveniently modelled. A number of problems are studied and comparisons with other ad hoc element models for smart structure modelling are presented. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
Eighteen‐node solid‐shell finite element models have been developed for the analysis of laminated composite plate/shell structures embedded with piezoelectric actuators and sensors. The explicit hybrid stabilization method is employed to formulate stabilization vectors for the uniformly reduced integrated 18‐node three‐dimensional composite solid element. Unlike conventional piezoelectric elements, the concept of the electric nodes introduced in this paper can effectively eliminate the burden of constraining the equality of the electric potential for the nodes lying on the same electrode. Furthermore, the non‐linear distribution of electric potential in the piezoelectric layer is expressed by introducing internal electric potential, which not only can simplify modelling but also obtains the same as the exact solution. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper a new reduced integration eight‐node solid‐shell finite element is presented. The enhanced assumed strain (EAS) concept based on the Hu–Washizu variational principle requires only one EAS degree‐of‐freedom to cure volumetric and Poisson thickness locking. One key point of the derivation is the Taylor expansion of the inverse Jacobian with respect to the element center, which closely approximates the element shape and allows us to implement the assumed natural strain (ANS) concept to eliminate the curvature thickness and the transverse shear locking. The second crucial point is a combined Taylor expansion of the compatible strain with respect to the center of the element and the normal through the element center leading to an efficient and locking‐free hourglass stabilization without rank deficiency. Hence, the element requires only a single integration point in the shell plane and at least two integration points in thickness direction. The formulation fulfills both the membrane and the bending patch test exactly, which has, to the authors' knowledge, not yet been achieved for reduced integration eight‐node solid‐shell elements in the literature. Owing to the three‐dimensional modeling of the structure, fully three‐dimensional material models can be implemented without additional assumptions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents a versatile low order locking‐free mixed solid‐shell element that can be readily employed for a wide range of linear elastic structural analyses, that is, from thick isotropic structures to multilayer anisotropic composites. This solid‐shell element has eight nodes with only displacement degrees of freedom and few assumed stress parameters that provide very accurate interlaminar stress calculations through the element thickness. These elements can be stacked on top of each other to model multilayer structures, fulfilling the interlaminar stress continuity at the interlayer surfaces and zero traction conditions on the top and bottom surfaces of the laminate. The element formulation is based on the well‐known Fraeijs de Veubeke–Hu–Washizu mixed variational principle with enhanced assumed strains formulation and assumed natural strains formulation to alleviate the different types of locking phenomena in solid‐shell elements. The distinct feature of the present formulation is its ability to accurately calculate the interlaminar stress field in multilayer structures, which is achieved by the introduction of a constraint equation on the interlaminar stresses in the Fraeijs de Veubeke–Hu–Washizu principle‐based enhanced assumed strains formulation. The intelligent computer coding of the present formulation makes the present element appropriate for a wide range of structural analyses. To assess the present formulation's accuracy, a variety of popular numerical benchmark examples related to element convergence, mesh distortion, and shell and laminated composite analyses are investigated and the results are compared with those available in the literature. These benchmark examples reveal that the proposed formulation provides very good results for the structural analysis of shells and multilayer composites. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
A formulation for 36‐DOF assumed strain triangular solid shell element is developed for efficient analysis of plates and shells undergoing finite rotations. Higher order deformation modes described by the bubble function displacements are added to the assumed displacement field. The assumed strain field is carefully selected to alleviate locking effect. The resulting element shows little effect of membrane locking as well as shear locking, hence, it allows modelling of curved shell structures with curved elements. The kinematics of the present formulation is purely vectorial with only three translational degrees of freedom per node. Accordingly, the present element is free of small angle assumptions, and thus it allows large load increments in the geometrically non‐linear analysis. Various numerical examples demonstrate the validity and effectiveness of the present formulation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents an eight‐node nonlinear solid‐shell element for static problems. The main goal of this work is to develop a solid‐shell formulation with improved membrane response compared with the previous solid‐shell element (MOS2013), presented in 1 . Assumed natural strain concept is implemented to account for the transverse shear and thickness strains to circumvent the curvature thickness and transverse shear locking problems. The enhanced assumed strain approach based on the Hu–Washizu variational principle with six enhanced assumed strain degrees of freedom is applied. Five extra degrees of freedom are applied on the in‐plane strains to improve the membrane response and one on the thickness strain to alleviate the volumetric and Poisson's thickness locking problems. The ensuing element performs well in both in‐plane and out‐of‐plane responses, besides the simplicity of implementation. The element formulation yields exact solutions for both the membrane and bending patch tests. The formulation is extended to the geometrically nonlinear regime using the corotational approach, explained in 2 . Numerical results from benchmarks show the robustness of the formulation in geometrically linear and nonlinear problems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The solid‐shell element presented in this paper has nine nodes: eight are classically located at the apexes and are fitted with three translational DOFs whereas the ninth is sited at the center and is endowed with only one DOF; a displacement along the ‘thickness’ direction. Indeed, to be used for modeling thin structures under bending effects, this kind of finite element has a favored direction where several integration points are distributed. Besides, there is solely one ‘in‐plane’ quadrature point to avoid locking phenomena and prohibitive CPU costs for large nonlinear computations. Because a reduced integration is not enough to completely prevent transverse shear locking, a shear–strain field is assumed. Compared with the other eight‐node ‘solid‐shell' bricks, the presence of a supplementary node has a main aim: getting a linear normal strain component which, along with a full three‐dimensional constitutive strain–stress behavior, allows to achieve similar results in bending cases as those obtained with the usual plane stress state hypothesis. For that, the ninth node DOF plays the role of an extra parameter essential for a quadratic interpolation of the displacement in the thickness direction. The advantage is that this DOF has a physical meaning and, for instance, a strength equivalent to a normal pressure can be prescribed. With a suitable nodal numbering, the band width is not significantly increased and meshes can easily be generated because the extra nodes are always located at element centers. To emphasize the peculiar features of such an element, a set of examples (linear and nonlinear) is carried out. Numerous comparisons with other elements show pretty good results in bending dominating problems while adding the event of a normal stress component in sheet metal forming simulations with double side contact. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
A degenerated shell element with composite implicit time integration scheme is developed in the present paper to solve the geometric nonlinear large deformation and dynamics problems of shell structures. The degenerated shell element is established based on the eight‐node solid element, where the nodal forces, mass matrices, and stiffness matrices are firstly obtained upon virtual velocity principle and then translated to the shell element. The strain field is modified based on the mixed interpolation of tensorial components method to eliminate the shear locking, and the constitutive relation is modified to satisfy the shell assumptions. A simple and practical computational method for nonlinear dynamic response is developed by embedding the composite implicit time integration scheme into the degenerated shell element, where the composite scheme combines the trapezoidal rule with the three‐point backward Euler method. The developed approach can not only keep the momentum and energy conservation and decay the high frequency modes but also lead to a symmetrical stiffness matrix. Numerical results show that the developed degenerated shell element with the composite implicit time integration scheme is capable of solving the geometric nonlinear large deformation and dynamics problems of the shell structures with momentum and energy conservation and/or decay. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper we address the extension of a recently proposed reduced integration eight‐node solid‐shell finite element to large deformations. The element requires only one integration point within the shell plane and at least two integration points over the thickness. The possibility to choose arbitrarily many Gauss points over the shell thickness enables a realistic and efficient modeling of the non‐linear material behavior. Only one enhanced degree‐of‐freedom is needed to avoid volumetric and Poisson thickness locking. One key point of the formulation is the Taylor expansion of the inverse Jacobian matrix with respect to the element center leading to a very accurate modeling of arbitrary element shapes. The transverse shear and curvature thickness locking are cured by means of the assumed natural strain concept. Further crucial points are the Taylor expansion of the compatible cartesian strain with respect to the center of the element as well as the Taylor expansion of the second Piola–Kirchhoff stress tensor with respect to the normal through the center of the element. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
In the present study first‐order shear deformable shell finite elements based on general curvilinear co‐ordinates are proposed. For the development of the present shell elements, a partial mixed variational functional with independently assumed strains is provided in order to avoid the severe locking troubles known as transverse shear and membrane lockings. Bubble functions are included in the shape function of displacement to improve the performance of the developed element. The proposed assumed strain four‐ and nine‐node elements based on the general tensor shell theory provide an efficient linkage framework for shell surface modelling and finite element analysis. In the several benchmark problems, the present shell elements with exact geometric representations demonstrate their performance compared to previously reported results. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
In the recent years, solid‐shell finite element models which possess no rotational degrees of freedom and applicable to thin plate/shell analyses have attracted considerable attention. Development of these elements are not straightforward. Shear, membrane, trapezoidal, thickness and dilatational lockings must been visioned. In this part of this paper, a novel eight‐node solid‐shell element is proposed. To resolve the shear and trapezoidal lockings, the assumed natural strain (ANS) method is resorted to. The hybrid‐stress formulation is employed to rectify the thickness and dilatational locking. The element is computationally more efficient than the conventional hybrid elements by adopting orthogonal‐assumed stress modes and enforcing admissible sparsity in the flexibility matrix. Popular benchmark tests are exercised to illustrate the efficacy of the elements. In Part II of the paper, the element will be generalized for smart structure modelling by including the piezoelectric effect. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
A theoretical framework is presented for analysing the coupled non‐linear response of shallow doubly curved adaptive laminated piezoelectric shells undergoing large displacements and rotations. The formulated mechanics incorporate coupling between in‐plane and flexural stiffness terms due to geometric curvature, coupling between mechanical and electric fields, and encompass geometric non‐linearity effects due to large displacements and rotations. The governing equations are formulated explicitly in orthogonal curvilinear co‐ordinates and are combined with the kinematic assumptions of a mixed‐field shear‐layerwise shell laminate theory. Based on the above formulation, a finite element methodology together with an incremental‐iterative technique, based on Newton–Raphson method is formulated. An eight‐node coupled non‐linear shell element is also developed. Various evaluation cases on laminated curved beams and cylindrical panels illustrate the capability of the shell finite element to predict the complex non‐linear behaviour of active shell structures including buckling, which is not captured by linear shell models. The numerical results also show the inherent capability of piezoelectric shell structures to actively induce large displacements through piezoelectric actuators, by jumping between multiple equilibrium states. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
A simple triangular solid shell element formulation is developed for efficient analysis of plates and shells undergoing finite rotations. The kinematics of the present solid shell element formulation is purely vectorial with only three translational degrees of freedom per node. Accordingly, the kinematics of deformation is free of the limitation of small angle increments, and thus the formulation allows large load increments in the analysis of finite rotation. An assumed strain field is carefully selected to alleviate the locking effect without triggering undesirable spurious kinematic modes. In addition, the curved surface of shell structures is modeled with flat facet elements to obviate the membrane locking effect. Various numerical examples demonstrate the efficiency and accuracy of the present element formulation for the analysis of plates and shells undergoing finite rotation. The present formulation is attractive in that only three points are needed for numerical integration over an element.  相似文献   

17.
To allow for large‐scale forming applications, such as converting paperboard into package containers, efficient and reliable numerical tools are needed. In finite element simulations of thin structures, elements including structural features are required to reduce the computational cost. Solid‐shell elements based on reduced integration with hourglass stabilization is an attractive choice. One advantage of this choice is the natural inclusion of the thickness, not present in standard degenerated shells, which is especially important for many problems involving contact. Furthermore, no restrictions are imposed on the constitutive models since the solid‐shell element does not require the plane stress condition to be enforced. In this work, a recently proposed efficient solid‐shell element is implemented together with a state‐of‐the‐art continuum model for paperboard. This approach is validated by comparing the obtained numerical results with experimental results for paperboard as well as with those found by using 3D continuum elements. To show the potential of this approach, a large‐scale forming simulation of paperboard is used as a proof of concept.  相似文献   

18.
Natural double‐layered structures observed in living organisms are known to exhibit asymmetric volume changes with environmental triggers. Typical examples are natural roots of plants, which show unique self‐organized bending behavior in response to environmental stimuli. Herein, light‐ and electro‐active polymer (LEAP) based actuators with a double‐layered structure are reported. The LEAP actuators exhibit an improvement of 250% in displacement and hold an object three times heavier as compared to that in the case of conventional electro‐active polymer actuators. Most interestingly, the bending motion of the LEAP actuators can be effectively locked for a few tens of minutes even in the absence of a power supply. Further, the self‐locking LEAP actuators show a large and reversible bending strain of more than 2.0% and require only 6.2 mW h cm?2 of energy to hold an object for 15 min at an operating voltage of 3 V. These novel self‐locking soft actuators should find wide applicability in artificial muscles, biomedical microdevices, and various innovative soft robot technologies.  相似文献   

19.
In this paper, a novel reduced integration eight‐node solid‐shell finite element formulation with hourglass stabilization is proposed. The enhanced assumed strain method is adopted to eliminate the well‐known volumetric and Poisson thickness locking phenomena with only one internal variable required. In order to alleviate the transverse shear and trapezoidal locking and correct rank deficiency simultaneously, the assumed natural strain method is implemented in conjunction with the Taylor expansion of the inverse Jacobian matrix. The projection of the hourglass strain‐displacement matrix and reconstruction of its transverse shear components are further employed to avoid excessive hourglass stiffness. The proposed solid‐shell element formulation successfully passes both the membrane and bending patch tests. Several typical examples are presented to demonstrate the excellent performance and extensive applicability of the proposed element. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Accuracy and efficiency are the main features expected in finite element method. In the field of low‐order formulations, the treatment of locking phenomena is crucial to prevent poor results. For three‐dimensional analysis, the development of efficient and accurate eight‐node solid‐shell finite elements has been the principal goal of a number of recent published works. When modelling thin‐ and thick‐walled applications, the well‐known transverse shear and volumetric locking phenomena should be conveniently circumvented. In this work, the enhanced assumed strain method and a reduced in‐plane integration scheme are combined to produce a new eight‐node solid‐shell element, accommodating the use of any number of integration points along thickness direction. Furthermore, a physical stabilization procedure is employed in order to correct the element's rank deficiency. Several factors contribute to the high computational efficiency of the formulation, namely: (i) the use of only one internal variable per element for the enhanced part of the strain field; (ii) the reduced integration scheme; (iii) the prevention of using multiple elements' layers along thickness, which can be simply replaced by any number of integration points within a single element layer. Implementation guidelines and numerical results confirm the robustness and efficiency of the proposed approach when compared to conventional elements well‐established in the literature. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号