首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clay‐dispersed poly(styrene‐co‐acrylonitrile) nanocomposites (PSAN) were synthesized by a free radical polymerization process. The montmorillonite (MMT) was modified by a cationic surfactant hexadecyltrimethylammonium chloride. The structures of PSAN were determined by wide‐angle X‐ray diffraction and FTIR spectroscopy. The dispersion of silicate layers in the polymer matrix was also revealed by transmission electron microscopy (TEM). It was confirmed that the clay was intercalated and exfoliated in the PSAN matrix. The increased thermal stability of PSAN with the addition of clay was observed by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The dielectric properties of PSAN were measured in the frequency range 100 Hz to 1 MHz at 35–70°C. It was found that the dielectric constant from the dipole orientation had been suppressed due to the intercalation of clay. The dielectric loss is strongly related to the residual sodium content of clay, which increases as the sodium content increases by the addition of clay. Copyright © 2004 Society of Chemical Industry  相似文献   

2.
Based on the character of a clay that could be separated into many 1‐nm thickness monolayers, clay styrene‐butadiene rubber (SBR) nanocomposites were acquired by mixing the SBR latex with a clay/water dispersion and coagulating the mixture. The structure of the dispersion of clay in the SBR was studied through TEM. The mechanical properties of clay/SBR nanocomposites with different filling amounts of clay were studied. The results showed that the main structure of the dispersion of clay in the SBR was a layer bundle whose thickness was 4–10 nm and its aggregation formed by several or many layer bundles. Compared with the other filler, some mechanical properties of clay/SBR nanocomposites exceeded those of carbon black/SBR composites and they were higher than those of clay/SBR composites produced by directly mixing clay with SBR through regular rubber processing means. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1873–1878, 2000  相似文献   

3.
Poly(styrene‐co‐methacrylic acid) containing 29 mol % of methacrylic acid (SMA‐29) and poly(isobutyl methacrylate‐co‐4‐vinylpyridine) containing 20 mol % of 4‐vinylpyridine (IBM4VP‐20) were synthesized, characterized, and used to elaborate binary and ternary nanocomposites of different ratios with a 3% by weight hexadecylammonium‐modified bentonite from Maghnia (Algeria) by casting method from tetrahydrofuran (THF) solutions. The morphology and the thermal behavior of these binary and ternary elaborated nanocomposites were investigated by X‐ray diffraction, scanning electron microscopy, FTIR spectroscopy, differential scanning calorimetry, and thermogravimetry. Polymer nanocomposites and nanoblends of different morphologies were obtained. The effect of the organoclay and its dispersion within the blend matrix on the phase behavior of the miscible SMA29/IBM4VP20 blends is discussed. The obtained results showed that increasing the amount of SMA29 in the IBM4VP20/SMA29 blend leads to near exfoliated nanostructure with significantly improved thermal stability. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
Thermal properties of blends of poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV) and poly(styrene‐co‐acrylonitrile) (SAN) prepared by solution casting were investigated by differential scanning calorimetry. In the study of PHBV‐SAN blends by differential scanning calorimetry, glass transition temperature and melting point of PHBV in the PHBV‐SAN blends were almost unchanged compared with those of the pure PHBV. This result indicates that the blends of PHBV and SAN are immiscible. However, crystallization temperature of the PHBV in the blends decreased approximately 9–15°. From the results of the Avrami analysis of PHBV in the PHBV‐SAN blends, crystallization rate constant of PHBV in the PHBV‐SAN blends decreased compared with that of the pure PHBV. From the above results, it is suggested that the nucleation of PHBV in the blends is suppressed by the addition of SAN. From the measured crystallization half time and degree of supercooling, interfacial free energy for the formation of heterogeneous nuclei of PHBV in the PHBV‐SAN blends was calculated and found to be 2360 (mN/m)3 for the pure PHBV and 2920–3120 (mN/m)3 for the blends. The values of interfacial free energy indicate that heterogeneity of PHBV in the PHBV‐SAN blends is deactivated by the SAN. This result is consistent with the results of crystallization temperature and crystallization rate constant of PHBV in the PHBV‐SAN blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 673–679, 2000  相似文献   

5.
A novel antistatic agent poly(ether‐ester‐amide) (PEEA) based on caprolactam, polyethylene glycol, and 6‐aminocaproic acid was successfully synthesized by melting polycondensation. The structure, thermal properties, and antistatic ability of the copolymer were characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analyses, and ZC36 megohmmeter. Test results show that PEEA is a block copolymer with a melting point of 217°C and a thermal decomposition temperature of 409°C, together with a surface resistivity of 108 Ω/sq. Antistatic poly(acrylonitrile‐co‐butadiene‐co‐styrene) (ABS) materials were prepared by blending different content of PEEA to ABS resin. The antistatic performances, morphology, and mechanical properties were investigated. It is indicated that the surface resistivity of PEEA/ABS blends decrease with the increasing PEEA content, and the excellent antistatic performance is obtained when the antistatic agent is up to 10–15%. The antistatic performance is hardly influenced by water‐washing and relative humidity, and a permanent antistatic performance is available. The antistatic mechanism is investigated. The compatibility of the blends was studied by scanning electron microscopy images. The ladder distribution of antistatic agent is formed, and a rich phase of antistatic agent can be found in the surface layer. The elongations at break of the blend are improved with the increasing antistatic agent; the tensile strength and the notched impact strength kept almost the same. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

6.
Amphiphilic copolymers of poly(styrene‐co‐2‐hydroxyethyl acrylate) (SHEA) and poly(styrene‐coN, N‐dimethylacrylamide) (SAD) of different compositions were prepared by free radical copolymerization and characterized by different techniques. Depending on the nature of the solvent and the densities of interacting species incorporated within the polystyrene matrices, novel materials as blends or interpolymer complexes with properties different from those of their constituents were elaborated when these copolymers are mixed together. The specific interpolymer interactions of hydrogen bonding type and the phase behavior of the elaborated materials were investigated by differential scanning calorimetry (DSC) and Fourier transform infra red spectroscopy (FTIR). The specific interactions of hydrogen bonding type that occurred within the SHEA and within their blends with the SAD were evidenced by FTIR qualitatively by the appearance of a new band at 1626 cm?1 and quantitatively using appropriate spectral curve fitting in the carbonyl and amide regions. The variation of the glass transition temperature with the blend composition behaved differently with the densities of interacting species. The thermal degradation behavior of the materials was studied by thermogravimetry. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
Isotactic, atactic, and syndiotactic poly(methyl methacrylates) (PMMAs) (designated as iPMMA, aPMMA, and sPMMA) with approximately the same molecular weight were mixed separately with poly(styrene‐co‐acrylonitrile) (abbreviated as PSAN) containing 25 wt % of acrylonitrile in tetrahydrofuran to make three polymer blend systems. Differential scanning calorimetry (DSC) was used to study the miscibility of these blends. The results showed that the tacticity of PMMA has a definite impact on its miscibility with PSAN. The aPMMA/PSAN and sPMMA/PSAN blends were found to be miscible because all the prepared films were transparent and showed composition dependent glass transition temperatures (Tgs). The glass transition temperatures of the two miscible blends were fitted well by the Fox equation, and no broadening of the glass transition regions was observed. The iPMMA/PSAN blends were found to be immiscible, because most of the cast films were translucent and had two glass transition temperatures. Through the use of a simple binary interaction model, the following comments can be drawn. The isotactic MMA segments seemed to interact differently with styrene and with acrylonitrile segments from atactic or syndiotactic MMA segments. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2894–2899, 1999  相似文献   

8.
Well defined poly (styrene‐co‐methylstyrene) grafted polyaniline/organo‐modified MgAl layered double hydroxide (LDH) was produced through solution intercalation method. After LDH nanoparticles were modified by the anion exchange reaction of MgAl (Cl) LDH with sodium dodecyl benzene sulfonate, Poly (styrene‐co‐methylstyrene) copolymers were synthesized by “living” free radical polymerization and then brominated with N‐bromosuccinimide. Afterwards, 1,4‐phenylenediamine was linked to brominated copolymers and prepared functionalized copolymer with amine. Poly (St‐co‐MSt)‐g‐PANI, has been synthesized by adding solution of ammonium persulfate and p‐toluenesufonic acid in DMSO solvent. Finally, Poly (styrene‐co‐methylstyrene) grafted‐Polyaniline/LDH nanocomposites were prepared by solution intercalation method. Characterization of these well‐defined nanocomposites included FT‐IR, gel permeation chromatography, thermogravimetric analysis, differential scanning calorimeter, transmission electron microscopy, and X‐ray diffraction. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

9.
The miscibility or complexation of poly(styrene‐co‐acrylic acid) containing 27 mol % of acrylic acid (SAA‐27) and poly(styrene‐coN,N‐dimethylacrylamide) containing 17 or 32 mol % of N,N‐dimethylacrylamide (SAD‐17, SAD‐32) or poly(N,N‐dimethylacrylamide) (PDMA) were investigated by different techniques. The differential scanning calorimetry (DSC) analysis showed that a single glass‐transition temperature was observed for all the mixtures prepared from tetrahydrofuran (THF) or butan‐2‐one. This is an evidence of their miscibility or complexation over the entire composition range. As the content of the basic constituent increases as within SAA‐27/SAD‐32 and SAA‐27/PDMA, higher number of specific interpolymer interactins occurred and led to the formation of interpolymer complexes in butan‐2‐one. The qualitative Fourier transform infrared (FTIR) spectroscopy study carried out for SAA‐27/SAD‐17 blends revealed that hydrogen bonding occurred between the hydroxyl groups of SAA‐27 and the carbonyl amide of SAD‐17. Quantitative analysis carried out in the 160–210°C temperature range for the SAA‐27 copolymer and its blends of different ratios using the Painter–Coleman association model led to the estimation of the equilibrium constants K2, KA and the enthalpies of hydrogen bond formation. These blends are miscible even at 180°C as confirmed from the negative values of the total free energy of mixing ΔGM over the entire blend composition. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1011–1024, 2007  相似文献   

10.
The imidization of poly(styrene‐co‐maleic anhydride) with amines may improve some of its end‐use properties. The objective of this study was to examine the mechanism and kinetics with aniline (ANL) as an amine of the preparation of poly(styrene‐coN‐phenyl maleimide). The reaction was carried out in a tetrahydrofuran solution at 25–55°C and in an ethylbenzene solution at 85–120°C. The extent of the reaction was determined by conductance titration, a new and simple method. Two consecutive reactions were involved in the imidization: ring opening to produce an acido‐amide group and ring closing to form a corresponding imide group. The imidization rate was greatly influenced by the reaction temperature and the molar ratio of ANL to the anhydride. A model for the imidization kinetics over a wide range of reaction temperatures and concentration ranges was developed and validated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2744–2749, 2006  相似文献   

11.
Poly(styrene‐co‐methyl methacrylate) nanocomposites were synthesized using reverse atom transfer radical polymerization (RATRP) in miniemulsion. Cetyltrimethylammonium bromide (CTAB) as a cationic surfactant applicable at higher temperatures was used for miniemulsion stabilization. Successful RATRP was carried out by using 4,4′‐dinonyl‐2,2′‐bipyridine (dNbPy) as ligand. Monodispersed droplets and particles with sizes in the range of 200 nm were revealed by dynamic light scattering (DLS). Conversion and molecular weight study was carried out using gravimetry and size exclusion chromatography (SEC) respectively. By adding clay content, a decrease in the conversion and molecular weight and an increase in the PDI value of the nanocomposites are observed. Thermal stability of the nanocomposites in comparison with the neat copolymer is revealed by thermogravimetric analysis (TGA). Increased Tg values by adding clay content was also obtained using differential scanning calorimetry (DSC). Scanning electron microscopy (SEM) images of the nanoconposite with 1 wt % of nanoclay loading, display monodispersed spherical particles with sizes in the range of ~ 200 nm. SEM findings are more compiled with dynamic light scattering (DLS) results. Well‐dispersed exfoliated clay layers in the polymer matrix of the nanocomposite with 1 wt % nanoclay loading is confirmed by transmission electron microscopy (TEM) images and X‐ray diffraction (XRD) data. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
Bis(3‐triethoxysilylpropyl) tetrasulfane (TSS) was reacted with the silanol groups of the commercially available clay, Closite®25A (C25A) to prepare TSS‐C25A, which was melt‐compounded with acrylonitrile‐butadiene‐styrene copolymer (ABS). The tetra sulfide groups of TSS‐C25A may chemically react with the vinyl groups of ABS to enhance the interaction between the clay and ABS. The ABS/clay composites exhibited much higher tensile strength and elongation at break than the neat ABS. Especially the elongation at break of ABS/TSS‐C25A composite was 5 times higher than that of neat ABS. The X‐ray diffraction patterns of the clay showed that the d001 basal spacing was enlarged from 1.89 nm to 2.71–2.86 nm as a result of the compounding with ABS. According to the thermogravimetric analysis, the thermal decomposition of the composite took place at a slightly higher temperature than that of neat ABS. Intercalated/exfoliated coexisting structures were observed by transmission electron microscopy for the ABS/clay composites. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
The mechanical properties, heat aging resistance, dynamic properties, and abrasion resistance of fibrillar silicate (FS)/styrene butadiene rubber (SBR) nanocomposites are discussed in detail. Compared with white carbon black (WCB)/SBR composites, FS/SBR composites exhibit higher tensile stress at definite strain, higher tear strength, and lower elongation at break but poor abrasion resistance and tensile strength. Surprisingly, FS/SBR compounds have better flow properties. This is because by rubber melt blending modified FS can be separated into numerous nanosized fibrils under mechanical shear. Moreover, the composites show visible anisotropy due to the orientation of nanofibrils. There is potential for FS to be used to some extent as a reinforcing agent for rubber instead of short microfibers or white carbon black. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2725–2731, 2006  相似文献   

14.
In this research, synthesis of novel nanocomposites based on a poly(styrene‐co‐ethyl methacrylate) copolymer matrix was investigated with different types and amounts of organomodified montmorillonite (MMT) clays. The in situ polymerization technique was selected with dispersion of the MMT nanoparticles into the comonomer mixture and subsequent bulk radical polymerization. Reaction kinetics was measured gravimetrically and it was found that the existence of rigid phenyl rings in the organomodifier may result in a hindered reaction rate especially at high clay loadings. Structural characteristics of the nanocomposites formed were verified with XRD and Fourier transform infrared analysis and mainly intercalated/partially exfoliated structures were verified; their glass transition temperature was measured with DSC, and their molecular weight distribution and average molecular weights were measured with gel permeation chromatography. The latter was also used to measure the variation of the copolymer average molecular weight with conversion. Slightly higher average molecular weight and Tg values for the copolymer in the nanocomposites were measured, compared with neat copolymer. The thermal stability of the nanocomposites was measured with TGA and found to be significantly improved. One‐step degradation revealed the existence of macromolecular chains without defective structures. Finally, pyrolysis of the nanocomposite copolymers resulted in the production of both comonomers in high amounts, followed by some dimers or trimers. © 2013 Society of Chemical Industry  相似文献   

15.
In this article, a conductive foam based on a novel styrene‐based thermoplastic elastomer called poly(styrene‐b‐butadiene‐co‐styrene‐b‐styrene) tri‐block copolymer S(BS)S was prepared and introduced. S(BS)S was particularly designed for chemical foaming with uniform fine cells, which overcame the shortcomings of traditional poly(styrene‐b‐butadiene‐b‐styrene) tri‐block copolymer (SBS). The preparation of conductive foams filled by the carbon black was studied. After the detail investigation of cross‐linking and foaming behaviors using moving die rheometer, the optimal foaming temperature was determined at 180°C with a complex accelerator for foaming agent. Scanning electron microscopy (SEM) images shown that the cell bubbles of conductive foam were around 30–50 µm. The conductivity of foams was tested using a megger and a semiconductor performance tester. SEM images also indicated that the conductivity of foams was mainly affected by the distribution of carbon black in the cell walls. The formation of the network of the carbon black aggregates had a contribution to perfect conductive paths. It also found that the conductivity of foams declined obviously with the foaming agent content increasing. The more foaming agent led to a sharp increasing of the number of cells (from 2.93 × 106 to 6.20 × 107 cells/cm3) and a rapid thinning of the cell walls (from 45.3 to 1.4 µm), resulting in an effective conductive path of the carbon black no forming. The conductive soft foams with the density of 0.48–0.09 g/cm3 and the volume resistivity of 3.1 × 103?2.5 × 105 Ω cm can be easily prepared in this study. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41644.  相似文献   

16.
A series of new complexes of poly(styrene‐co‐methacrylic acid) with Ln(III) (Ln = La, Eu, Tb) were synthesized and well characterized by means of elemental analysis, FTIR, differential scanning calorimetric (DSC) analysis, TG‐DTA analysis, X‐ray diffraction (XRD), and fluorescence determination. The elemental analysis and FTIR studies showed that a large part of carboxylic groups on the side chain of the copolymer are coordinated with Ln(III) ions. The TG‐DTA and DSC analysis results indicated that the complexes have good thermal stability. XRD experiments showed that copolymers and the complexes are amorphous. Among these complexes, Eu(III) complexes and Tb(III) complexes exhibit characteristic fluorescence with comparatively high brightness and good monochromaticity. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
Because silica has strong filler‐filler interactions and adsorbs polar materials, a silica‐filled rubber compound exhibits poor dispersion of the filler and poor cure characteristics in comparison with those of a carbon black‐filled rubber compound. Acrylonitrile‐butadiene rubber (NBR) improves filler dispersion in silica‐filled styrene‐butadiene rubber (SBR) compounds. The influence of the NBR type on the properties of silica‐filled SBR compounds containing NBR was studied with NBRs of various acrylonitrile contents. The composition of the bound rubber was different from that of the compounded rubber. The NBR content of the bound rubber was higher than that of the compounded rubber; this became clearer for NBR with a higher acrylonitrile content. The Mooney scorch time and cure rate became faster as the acrylonitrile content in NBR increased. The modulus increased with an increase in the acrylonitrile content of NBR because the crosslink density increased. The experimental results could be explained by interactions of the nitrile group of NBR with silica. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 385–393, 2002  相似文献   

18.
研究了硬脂酸(SA)处理有机黏土(OC)制备橡胶/黏土纳米复合材料的结构与性能,并与未处理的OC制备的纳米复合材料进行了对比。结果表明,SA上的—COOH与OC片层表面的—OH发生了酯化反应,促使SA插层进入OC层间,使层间距扩大。采用SA处理OC制备出分散相态细致均匀、力学性能优异的丁腈橡胶/黏土(NBR/SA-OC)纳米复合材料;当OC与SA的质量比为10∶6时,纳米复合材料的性能最优。用带有极性和反应官能团的橡胶制备橡胶/黏土纳米复合材料,OC的分散性更好,与未处理的OC制备的纳米复合材料相比力学性能更优。  相似文献   

19.
Acrylic acid was crosslinked with N,N′‐methylenebisacrylamide and converted to bioactive hydrogels by neutralization with different amino containing compounds. Several amino containing compounds were used such as 2‐aminopyridine, triethanol amine, hexamethylenetetramine (HMTA), pyridine, and imidazole. The best crosslinker ratio was determined in addition to the maximum absorbed water in different mediums. The antibacterial activity of the prepared gels were examined against examples of Gram‐positive (Staphylococcus aureus) and Gram‐negative bacteria (Escherichia coli) using agar plate method. The study was extended by evaluating one of prepared gels in columns as models for water filters. All prepared gels showed antibacterial action in agar plate method against both bacterium and the column method using one of the prepared gels showed excellent filtration and biocidal action. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
The imidization of poly(styrene‐co‐maleic anhydride) (SMA) was conducted, and the glass‐transition temperatures (Tg's) of the resulting products were measured with differential scanning calorimetry. The contributions from functional groups of maleic anhydride, N‐phenylmaleamic acid, and N‐phenylmaleimide to Tg were examined. Tg increased in the order of SMA < styrene–N‐phenyl maleimide copolymer < styrene–N‐phenyl maleamic acid copolymer and followed the Fox equation. Tg of the imidized products of SMA could be controlled by the conversions of both ring‐opening and ring‐closing reactions. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2418–2422, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号