首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2,6‐Bis (4‐aminophenoxy) pyridine was prepared via reaction of 4‐aminophenol with 2,6‐dichloropyridine in the presence of potassium carbonate in N‐methyl‐2‐pyrrolidone (NMP). This pyridine‐based ether diamine was reacted with two moles of trimellitic anhydride to synthesize related diimide‐diacid (DIDA). A high temperature solution polycondensation reaction of DIDA with different diols in the presence of triethylamine hydrochloride in dichlorobenzene resulted in different poly(ether imide ester)s. The monomer and polymers were fully characterized, and the physical and thermal properties of the polymers were studied. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 570–576, 2005  相似文献   

2.
A series of new aromatic poly(amide‐imide)s were synthesized by the triphenyl phosphite‐activated polycondensation of the diimide‐diacid, 1,4‐bis(trimellitimido)‐2,5‐dichlorobenzene (I), with various aromatic diamines in a medium consisting of N‐methyl‐2‐pyrrolidone (NMP), pyridine, and calcium chloride. The poly(amide‐imide)s had inherent viscosities of 0.88–1.27 dL g−1. The diimide‐diacid monomer (I) was prepared from 2,5‐dichloro‐p‐phenylenediamine with trimellitic anhydride. All the resulting polymers were amorphous and were readily soluble in a variety of organic solvents, including NMP and N,N‐dimethylacetamide. Transparent, flexible, and tough films of these polymers could be cast from N,N‐dimethylacetamide or NMP solutions. Cast films had tensile strengths ranging from 92 to 127 MPa, elongations at break from 4 to 24%, and initial moduli from 2.59 to 3.65 GPa. The glass transition temperatures of these polymers were in the range of 256°–317°C, and the 10% weight loss temperatures were above 430°C in nitrogen. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 271–278, 1999  相似文献   

3.
New diimide–dicarboxylic acids, ie 4‐phenyl‐2,6‐bis(4‐trimellitimidophenyl)pyridine and 4‐p‐biphenyl‐2,6‐bis‐(4‐trimellitimidophenyl)pyridine, were synthesized by the condensation reaction of 4‐phenyl‐2,6‐bis(4‐aminophenyl)pyridine and 4‐p‐biphenyl‐2,6‐bis(4‐aminophenyl)pyridine with trimellitic anhydride in glacial acetic acid or dimethylformamide. The monomers were fully characterized by FT‐IR and NMR spectroscopies, and elemental analyses. A series of novel poly(amide–imide)s with inherent viscosities of 0.68–0.87 dl g?1 was prepared from the two diimide–diacids with various aromatic diamines by direct polycondensation. The poly(amide–imide)s were characterized by FT‐IR and NMR spectroscopies. The λmax data for the resulting poly(amide–imide)s were in the range of 260–292 nm. These polymers exhibited good solubilities in polar aprotic solvents. The 10 % weight loss temperatures are above 485 °C under a nitrogen atmosphere. Copyright © 2004 Society of Chemical Industry  相似文献   

4.
A series of new aromatic poly(amide‐imide)s were synthesized by the triphenyl phosphite‐activated polycondensation of the diimide‐diacid, 2,5‐bis(trimellitimido)chlorobenzene (I) with various aromatic diamines in a medium consisting of N‐methyl‐2‐pyrrolidone (NMP), pyridine, and calcium chloride. The poly(amide‐imide)s had inherent viscosities of 0.76–1.42 dL g−1. The diimide‐diacid monomer (I) was prepared from 2‐chloro‐p‐phenylenediamine with trimellitic anhydride. Most of the resulting polymers showed an amorphous nature and were readily soluble in a variety of organic solvents, including NMP and N,N‐dimethylacetamide. Transparent, flexible, and tough films of these polymers could be cast from N,N‐dimethylacetamide or NMP solutions. Their cast films had tensile strengths ranging from 74 to 95 MPa, elongations at break from 7 to 11%, and initial moduli from 1.38 to 3.25 GPa. The glass transition temperatures of these polymers were in the range of 233°–260°C, and the 10% weight loss temperatures were above 450°C in nitrogen. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1691–1701, 1999  相似文献   

5.
New aromatic diimide‐dicarboxylic acids having kinked and cranked structures, 2,2′‐bis(4‐trimellitimidophenoxy)biphenyl (2a) and 2,2′‐bis(4‐trimellitimidophenoxy)‐1,1′‐binaphthyl (2b), were synthesized by the reaction of trimellitic anhydride with 2,2′‐bis(4‐aminophenoxy)biphenyl (1a) and 2,2′‐bis(4‐aminophenoxy)‐1,1′‐binaphthyl (1b), respectively. Compounds 2a and 2b were characterized by FT‐IR and NMR spectroscopy and elemental analyses. Then, a series of novel aromatic poly(amide‐imide)s were prepared by the phosphorylation polycondensation of the synthesized monomers with various aromatic diamines. Owing to structural similarity, and a comparison of the characterization data, a model compound was synthesized by the reaction of 2b with aniline. The resulting polymers with inherent viscosities of 0.58–0.97 dl g?1 were obtained in high yield. The polymers were fully characterized by FT‐IR and NMR spectroscopy. The ultraviolet λmax values of the poly(amide‐imide)s were also determined. The polymers were readily soluble in polar aprotic solvents. They exhibited excellent thermal stabilities and had 10% weight loss at temperatures above 500 °C under a nitrogen atmosphere. Copyright © 2003 Society of Chemical Industry  相似文献   

6.
An imide ring‐performed dicarboxylic acid bearing one hexafluoroisopropylidene and two ether linkages between aromatic rings, 2,2‐bis[4‐(4‐trimellitimidophenoxy)phenyl]hexafluoropropane (II), was prepared from the condensation of 2,2‐bis[4‐(4‐aminophenoxy)phenyl]hexafluoropropane and trimellitic anhydride. A novel series of poly(amide‐imide)s having inherent viscosities of 0.72 ∼ 1.86 dL g−1 was prepared by the triphenyl phosphite‐activated polycondensation from the diimide‐diacid (II) with various aromatic diamines in a medium consisting of N‐methyl‐2‐pyrolidone, pyridine, and calcium chloride. Several of the resulting polymers were soluble in polar amide solvents, and their solutions could be cast into transparent, thin, flexible films having good tensile properties and high thermal stability. The 10% weight loss temperatures were all above 495°C in air or nitrogen atmosphere, and the glass transition temperatures were in the range of 237°–276°C. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 823–831, 1999  相似文献   

7.
A new monomer of tetraimide‐dicarboxylic acid (IV) was synthesized by starting from ring‐opening addition of 4,4′‐oxydiphthalic anhydride, trimellitic anhydride, and 1,4‐bis(4‐amino‐2‐trifluoromethylphenoxy)benzene at a 1:2:2 molar ratio in N‐methyl‐2‐pyrrolidone (NMP). From this new monomer, a series of novel organosoluble poly(amide‐imide‐imide)s with inherent viscosities of 0.7–0.96 dL/g were prepared by triphenyl phosphite activated polycondensation from the tetraimide‐diacid with various aromatic diamines. All synthesized polymers were readily soluble in a variety of organic solvents such as NMP and N,N‐dimethylacetamide, and most of them were soluble even in less polar m‐cresol and pyridine. These polymers afforded tough, transparent, and flexible films with tensile strengths ranging from 99 to 125 MPa, elongations at break from 12 to 19%, and initial moduli from 1.6 to 2.4 GPa. The thermal properties and stability were also good with glass‐transition temperatures of 236–276°C and thermogravimetric analysis 10 wt % loss temperatures of 504–559°C in nitrogen and 499–544°C in air. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2854–2864, 2006  相似文献   

8.
A series of new aromatic poly(amide–imide)s (PAIs) was synthesized by triphenyl phosphite‐activated polycondensation of the diimide–diacid, 1,4‐bis(trimellitimido)‐2,3,5,6‐tetramethylbenzene (I), with various aromatic diamines in a medium consisting of N‐methyl‐2‐pyrrolidone (NMP), pyridine, and calcium chloride. The PAIs had inherent viscosities of 0.82–2.43 dL/g. The diimide–diacid monomer (I) was prepared from 2,3,5,6‐tetramethyl‐p‐phenylenediamine with trimellitic anhydride (TMA). Most of the resulting polymers showed an amorphous nature and were readily soluble in a variety of organic solvents including NMP, N,N‐dimethylacetamide (DMAc), and N,N‐dimethylformamide (DMF). Transparent, flexible, and tough films of these polymers could be cast from DMAc solutions. Their cast films had tensile strengths ranging from 80 to 95 MPa, elongation at break from 10 to 45%, and initial modulus from 2.01 to 2.50 GPa. The 10% weight loss temperatures of these polymers were above 510°C in nitrogen. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1162–1170, 2000  相似文献   

9.
A series of new alternative poly(amide–imide)s (PAIs, IIIa–j ) was synthesized by the direct polycondensation of 1,4‐bis(4‐aminophenoxy)naphthalene (1,4‐BAPON) with various aromatic diimide–diacids. These polymers were obtained in quantitative yields with inherent viscosities of 0.71–1.03 dL/g. Except for IIIa, most of the polymers were soluble in aprotic polar solvents such as NMP, DMAc, DMF, and DMSO and could be solution‐cast into transparent, flexible, and tough films. The glass transition temperatures of these PAIs were in the range of 235–280°C. Thermogravimetric analyses established that these polymers were fairly stable up to 450°C, and 10% weight loss temperatures were recorded in the range of 520–569°C under nitrogen and 506–566°C under an air atmosphere. Compared with the PAIs with the 1,4‐bis(4‐aminophenoxy)benzene structure (series IV), the solubility of series III was better than that of series IV. Series III also exhibited lower crystallinity and better processability than those of series IV. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 217–225, 2000  相似文献   

10.
2,6‐Bis(4‐aminophenoxy)pyridine was prepared via reaction of 4‐aminophenol with 2,6‐dichloropyridine in the presence of potassium carbonate. Reaction of the diamine with two mol of trimellitic anhydride afforded a diacid with preformed imide structures. Poly(ether imide amide)s were prepared by polycondensation reactions of the diacid with different diamines in the presence of triphenyl phosphite. All the monomers and polymers were fully characterized and the physical properties of the polymers including solution viscosity, thermal stability, thermal behavior and solubility were studied. Thermal analysis data showed the polymers to have high thermal stability. Copyright © 2004 Society of Chemical Industry  相似文献   

11.
A novel class of wholly aromatic poly(ester‐imide)s, having a biphenylene pendant group, with inherent viscosities of 0.32–0.49 dL g?1 was prepared by the diphenylchlorophosphate‐activated direct polyesterification of the preformed imide‐ring‐containing diacid, 4‐p‐biphenyl‐2,6‐bis(4‐trimellitimidophenyl)pyridine (1) with various aromatic dihydroxy compounds in the presence of pyridine and lithium chloride. A reference diacid, 2,6‐bis(trimellitimido)pyridine (2) without a biphenylene pendant group and two phenylene rings in the backbone, was also synthesized for comparison purposes. At first, with due attention to structural similarity and to compare the characterization data, a model compound (3) was synthesized by the reaction of compound 1 with two mole equivalents of phenol. Moreover, the optimum condition of polymerization reactions was obtained via a study of the model compound synthesis. All of the resulting polymers were characterized by Fourier transform infrared and 1H NMR spectroscopy and elemental analysis. The ultraviolet λmax values of the poly(ester‐imide)s were also determined. All of the resulting polymers exhibited excellent solubility in common organic solvents, such as pyridine, chloroform, tetrahydrofuran, and m‐cresol, as well as in polar organic solvents, such as N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide, and dimethyl sulfoxide. The crystalline nature of the polymers obtained was evaluated by means of wide‐angle X‐ray diffraction. The resulting poly(ester‐imide)s showed nearly an amorphous nature, except poly(ester‐imide) derived from 4,4′‐dihydroxy biphenyl. The glass transition temperatures (Tg) of the polymers determined by differential scanning calorimetry thermograms were in the range 298–342 °C. The 10% weight loss temperatures (T10%) from thermogravimetric analysis curves were found to be in the range 433–471 °C in nitrogen. Films of the polymers were also prepared by casting the solutions. Copyright © 2006 Society of Chemical Industry  相似文献   

12.
A series of new, organosoluble, and light‐colored poly(amide imide imide)s were synthesized from tetraimide dicarboxylic acid ( I ) and various aromatic diamines by direct polycondensation with triphenyl phosphite and pyridine as condensing agents. I was prepared by the azeotropic condensation of 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride, m‐aminobenzoic acid, and 4,4′‐oxydianiline at a 2/2/1 molar ratio in N‐methyl‐2‐pyrrolidone (NMP)/toluene. The thin films cast from N,N‐dimethylacetamide (DMAc) had cutoff wavelengths shorter than 400 nm (365–394 nm) and color coordinate b* values between 13.10 and 36.07; these polymers were lighter in color than the analogous poly(amide imide)s and isomeric polymers. All of the polymers were readily soluble in a variety of organic solvents, including NMP, DMAc, N,N‐dimethylformamide, dimethyl sulfoxide, and even less polar dioxane and tetrahydrofuran. The cast films exhibited tensile strengths of 90–104 MPa, elongations at break of 7–22%, and initial moduli of 1.9–2.4 GPa. The glass‐transition temperatures of the polymers were recorded at 274–319°C. They had 10% weight losses at temperatures beyond 520°C and left more than a 50% residue even at 800°C in nitrogen. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 669–679, 2003  相似文献   

13.
A new diamine 5,5′‐bis[4‐(4‐aminophenoxy)phenyl]‐hexahydro‐4,7‐methanoindan ( 3 ) was prepared through the nucleophilic displacement of 5,5′‐bis(4‐hydroxylphenyl)‐hexahydro‐4,7‐methanoindan ( 1 ) with p‐halonitrobenzene in the presence of K2CO3 in N,N‐dimethylformamide (DMF), followed by catalytic reduction with hydrazine and Pd/C in ethanol. A series of new polyamides were synthesized by the direct polycondensation of diamine 3 with various aromatic dicarboxylic acids. The polymers were obtained in quantitative yields with inherent viscosities of 0.76–1.02 dl g−1. All the polymers were soluble in aprotic dipolar solvents such as N,N‐dimethylacetamide (DMAc) and N‐methyl‐2‐pyrrolidone (NMP), and could be solution cast into transparent, flexible and tough films. The glass transition temperatures of the polyamides were in the range 245–282 °C; their 10% weight loss temperatures were above 468 °C in nitrogen and above 465 °C in air. © 2000 Society of Chemical Industry  相似文献   

14.
A series of new cardo poly(ether imide)s bearing flexible ether and bulky xanthene pendant groups was prepared from 9,9‐bis[4‐(4‐aminophenoxy)phenyl]xanthene with six commercially available aromatic tetracarboxylic dianhydrides in N,N‐dimethylacetamide (DMAc) via the poly(amic acid) precursors and subsequent thermal or chemical imidization. The intermediate poly(amic acid)s had inherent viscosities between 0.83 and 1.28 dL/g, could be cast from DMAc solutions and thermally converted into transparent, flexible, and tough poly(ether imide) films which were further characterized by X‐ray and mechanical analysis. All of the poly(ether imide)s were amorphous and their films exhibited tensile strengths of 89–108 MPa, elongations at break of 7–9%, and initial moduli of 2.12–2.65 GPa. Three poly(ether imide)s derived from 4,4′‐oxydiphthalic anhydride, 4,4′‐sulfonyldiphthalic anhydride, and 2,2‐bis(3,4‐dicarboxyphenyl))hexafluoropropane anhydride, respectively, exhibited excellent solubility in various solvents such as DMAc, N,N‐dimethylformamide, N‐methyl‐2‐pyrrolidinone, pyridine, and even in tetrahydrofuran at room temperature. The resulting poly(ether imide)s with glass transition temperatures between 286 and 335°C had initial decomposition temperatures above 500°C, 10% weight loss temperatures ranging from 551 to 575°C in nitrogen and 547 to 570°C in air, and char yields of 53–64% at 800°C in nitrogen. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
Two diamines, 2,6‐bis(4‐aminophenoxy)pyridine and 2,6‐bis(5‐amino‐1‐naphenoxy)pyridine, were prepared through the nucleophilic aromatic substitution reaction of 4‐aminophenol and 5‐amino‐1‐naphthol, respectively, with 2,6‐dichloropyridine. Poly(ether urea)s were synthesized through the polyaddition reactions of these diamines with aromatic, semiaromatic, and cycloaliphatic diisocyanates. All the monomers and polymers were fully characterized, and physical properties of the polymers, including the thermal behavior, thermal stability, solubility, and solution viscosity, were studied. The polyureas showed improved thermal stability. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 961–965, 2004  相似文献   

16.
A new kind of pyridine‐containing aromatic diamine monomer, 4‐phenyl‐2,6‐bis[4‐(4‐aminophenoxy)phenyl]‐pyridine (PAPP), was successfully synthesized by a modified chichibabin reaction of benzaldehyde and a substituted acetophenone, 4‐(4‐nitrophenoxy)‐acetophenone (NPAP), followed by a reduction of the resulting dinitro compound 4‐phenyl‐2,6‐bis[4‐(4‐nitrophenoxy)phenyl]‐pyridine (PNPP) with Pd/C and hydrazine monohydrate. The aromatic diamine was employed to synthesize a series of new pyridine‐containing polyimides by polycondensation with various aromatic dianhydrides in N‐methy‐2‐pyrrolidone (NMP) via the conventional two‐step method, i.e., ring‐opening polycondensation forming the poly (amic acid)s and further thermal or chemical imidization forming polyimides. The inherent viscosities of the resulting polyimides were in the range of 0.79–1.13 dL/g, and most of them were soluble in common organic solvents such as N,N‐dimethylacetamide (DMAc), NMP, and tetrahydrofuran (THF), etc. Meanwhile, strong and flexible polyimide films were obtained, which had good thermal stability, with the glass transition temperatures (Tg) of 268–338°C and the temperature at 5% weight loss of 521–548°C in air atmosphere, as well as outstanding mechanical properties with tensile strengths of 89.2–112.1 MPa and elongations at break of 9.5–15.4%. The polyimides also were found to possess low dielectric constants ranging from 2.53 to 3.11. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 212–219, 2007  相似文献   

17.
Three series of isomeric poly(amide imide)s (series III, IV, and V) were synthesized by the direct polycondensation of 2,2′‐bis(4‐aminophenoxy)biphenyl (2,2′‐BAPB), 4,4′‐bis(4‐aminophenoxy)biphenyl (4,4′‐BAPB), or their equimolar mixture (2,2′‐BAPB/4,4′‐BAPB = 1/1) with 12 diimide diacids and with triphenyl phosphite and pyridine as condensing agents. A comparison of the physical properties of these three series was also made. The inherent viscosities of series III, IV, and V were 0.25–0.84, 0.25–1.52, and 0.43–1.30 dL g?1, respectively. Most of the series III polymers showed better solubility because of the non‐para structure, with the solubility order found to be III > V > IV. According to X‐ray diffraction patterns, the amorphous poly(amide imide)s had excellent solubility, whereas the crystalline polymers were less soluble. All the soluble polymers afforded transparent, flexible, and tough films, which had tensile strengths of 57–104 MPa, elongations at break of 3–20%, and initial moduli of 2.05–2.86 GPa. The glass‐transition temperatures (measured by differential scanning calorimetry) were highest for series IV, which contained the rigid 4,4′‐biphenyl units (254–299°C); copolymer series V ranked second (237–277°C), and series III, with crank 2,2′‐biphenyl structures, had the lowest values (227–268°C). The 10% weight‐loss temperatures (measured by thermogravimetric analysis) were close to one another, ranging from 527 to 574°C in nitrogen and from 472 to 543°C in air. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2763–2774, 2002  相似文献   

18.
A new‐type of dicarboxylic acid was synthesized from the reaction of 2,5‐bis(4‐aminobenzylidene)cyclopentanone with trimellitic anhydride in a solution of glacial acetic acid/pyridine (Py) at refluxing temperature. Six novel heat resistance poly(amide‐imide)s (PAIs) with good inherent viscosities were synthesized, from the direct polycondensation reaction of N,N′‐[2,5‐bis(4‐aminobenzylidene)cyclopentanone]bistrimellitimide acid with several aromatic diamines, by two different methods such as direct polycondensation in a medium consisting of N‐methyl‐2‐pyrrolidone (NMP)/triphenyl phosphite (TPP)/calcium chloride (CaCl2)/pyridine (Py) and direct polycondensation in a p‐toluene sulfonyl chloride (tosyl chloride, TsCl)/pyridine (Py)/N,N‐dimethylformamide (DMF) system. All of the above polymers were fully characterized by 1H NMR, FTIR, elemental analysis, inherent viscosity, solubility tests, UV‐vis spectroscopy, differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), and derivative of thermaogravimetric (DTG). The resulted poly(amide‐imide)s (PAIs) have showed admirable good inherent viscosities, thermal stability, and solubility. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
A series of new alternating aromatic poly(ester‐imide)s were prepared by the polycondensation of the preformed imide ring‐containing diacids, 2,2′‐bis(4‐trimellitimidophenoxy)biphenyl (2a) and 2,2′‐bis(4‐trimellitimidophenoxy)‐1,1′‐binaphthyl (2b) with various aromatic dihydroxy compounds in the presence of pyridine and lithium chloride. A model compound (3) was also prepared by the reaction of 2b with phenol, its synthesis permitting an optimization of polymerization conditions. Poly(ester‐imides) were fully characterized by FTIR, UV‐vis and NMR spectroscopy. Both biphenylene‐ and binaphthylene‐based poly(ester‐imide)s exhibited excellent solubility in common organic solvents such as tetrahydrofuran, m‐cresol, pyridine and dichloromethane. However, binaphthylene‐based poly(ester‐imide)s were more soluble than those of biphenylene‐based polymers in highly polar organic solvents, including N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide and dimethyl sulfoxide. From differential scanning calorimetry thermograms, the polymers showed glass‐transition temperatures between 261 and 315 °C. Thermal behaviour of the polymers obtained was characterized by thermogravimetric analysis, and the 10 % weight loss temperatures of the poly(ester‐imide)s was in the range 449–491 °C in nitrogen. Furthermore, crystallinity of the polymers was estimated by means of wide‐angle X‐ray diffraction. The resultant poly(ester‐imide)s exhibited nearly an amorphous nature, except poly(ester‐imide)s derived from hydroquinone and 4,4′‐dihydroxybiphenyl. In general, polymers containing binaphthyl units showed higher thermal stability but lower crystallinity than polymers containing biphenyl units. Copyright © 2005 Society of Chemical Industry  相似文献   

20.
Six new poly(amide‐imide)s 8a–f containing trimethylene moiety in the main chain were synthesized by the polycondensation reactions of 1,3‐bis[4,4'‐(trimellitimido) phenoxy] propane 6 with six different aromatic diamines 7a–f in a medium constituting N‐methyl‐2‐pyrrolidone, triphenylphosphite, CaCl2, and pyridine as condensing agents. The polycondensation reaction produced a series of novel poly(amide‐imide)s 8a–f in high yields with inherent viscosities between 0.35 and 0.63 dL/g. The resulting poly(amide‐imide)s were characterized by elemental analysis, viscosity measurements, thermal gravimetric analysis (TGA and DTG), solubility tests, and FTIR spectroscopy. 1,3‐Bis[4,4'‐(trimellitimido) phenoxy] propane 6 as a new monomer containing trimethylene moiety was synthesized using a three‐step reaction. At first 1,3‐bis[4,4'‐nitrophenoxy] propane 3 was prepared by the reaction of 4‐nitrophenol 1 with 1,3‐dibromo propane 2 in DMF solution . Then, dinitro 3 was reduced to 1,3‐bis[4,4'‐aminophenoxy] propane 4 by using a solution of sodium sulfite in ethanol. Finally, 1,3‐bis[4,4'‐(trimellitimido) phenoxy] propane 6 was prepared by the reaction of one equivalent diamine 4 with two equivalents of trimellitic anhydride 5 in a mixture of acetic acid‐pyridine (3 : 2). © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号