首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Innovative PACVD Duplex Layer Systems applied for the Light Metal Die Casting Process Duplex‐PACVD hard coatings are well‐known for increasing the tool performance in terms of adhesion, wear, fatigue, and corrosion resistance of the steel. The developments made in synthesizing duplex nanostructure and nanocomposite, mono and gradient layers based on borides are described. The aim of the investigation is to optimize the surface capability by plasma process combinations: duplex process, gradient‐layer. Within this work different types of duplex hard coatings produced by PACVD were investigated in terms of their tribological behavior and were tested in aluminum and magnesium die casting applications. Practical tests have been carried out by automobile producers and part suppliers. All coatings tested on die casting tools showed a significant increase of lifetime and a reduced metal adhesion tendency. The economic efficiency of coated die casting tools could be proved.  相似文献   

2.
Recently developed compeDIA®‐ abrasive pencils have been produced and tested for the machining of cemented carbide molding tools. In order to produce abrasive pencils, carbide base plates have been grinded and coated with a diamond layer by a Hot‐Filament‐CVD‐process. The testing of the abrasive pencils took place with an ultra‐precision grinding machine on carbide workpieces. Surface roughness of the workpiece and its wheel life were the criteria for evaluation. For the specific adjustment of the grain size of the abrasive pencils, the adequate coating parameters were worked out, and the dependencies on basic influencing variables at coating procedures, such as nominal diameter and grinding length, were calculated. In order to be able to coat the grinded base plates with enough film adhesion, a practical pre‐treatment method was developed and tested, which removes the fringe zone, that was damaged during the grinding process. At present, the costs for the coating process are uneconomically high, though. By means of large‐scale production in connection with an automated pre‐treatment and coating it would be possible to lower the costs so far that they are on the same cost level with other coatings like TiN or TiAlN. The CVD‐Diamond abrasive pencils are very appropriate for tool and die making. It is to be expected that through further development of tools and through process optimization, the quality of the wrought workpiece can be ameliorated and surface finishes of Ra < 0,3 μm can be reached. The wheel life could be increased to appropriate values by optimization of the coating technology. The range of the machining parameters, in which the grinding process can be accomplished expediently without leading to a broken die, have been worked out. Afterwards, a die‐casting component with typically shaped elements was designed and an adequate molding tool prototype was crafted. With that, the basic conditions for tool‐ and die‐making were worked out in order to put into practice a fast and flexible machining of cemented carbide molding tools with the aid of those innovative abrasive pencils. In contrast to the traditional molding tool material made of brass, clear advantages in tool life can be made in the production of miniature serial‐parts by drawing, deep‐drawing or extrusion.  相似文献   

3.
Wear reduction on dies for precision forging of gear wheels by means of multi‐layer coating (TiN‐TiCN‐TiC) Due to high thermal, mechanical and tribological loads the tool life quantity of hot forging dies compared to other manufacturing processes is relatively low. Depending on the number of forged parts the mentioned loads lead to different failure causes of the dies. In this connection wear is the main failure cause of hot forging dies. Especially in the precision forging process of gear wheels with its exacting tolerances the tool life quantity is low, which leads to often interruptions of the production process. Because wear concentrates on the near‐surface die areas, these problems can be reduced by increasing the wear resistance of these areas by the Duplex PACVD‐Method, which means nitriding and multi‐layer coating (TiN‐TiCN‐TiC).  相似文献   

4.
In the extrusion process of aluminium alloys at elevated temperature, the dies are used under very severe thermal and mechanical stresses. Furthermore slide friction and adhesive wear occur in the interaction zone between extrusion die and extrusion product. This tribological process has significant effects in several aspects such as the surface quality, the dimensional tolerances of extruded products and the lifetimes of the dies. To improve the die performance and the quality of aluminium products, a duplex process combining a plasma nitriding (PN) pretreatment and a plasma‐assisted CVD or PVD was applied on the extrusion dies, which are made of hot working steel (X38Cr MoV51). The duplex layers are produced at a temperature of 530°C This is below the tempering temperature of the hot working steel. The effects of process parameters during plasma nitriding, such as duty cycle, nitrogen concentration in process gas and nitriding time, are investigated. The optimized modification of the die surface has been achieved. The duplex layers (TiBN‐, CrN‐ and W‐C:H‐films on the plasmanitriding films) have higher macro hardness (HV9.5) and critical load, in comparison with the conventional films without plasma nitriding pretreatment. The performance of the coated dies are examined by means of a direct extrusion. It is confirmed that the duplex layers suit best for the extrusion at elevated temperature.  相似文献   

5.
In this paper an efficient three‐dimensional hybrid thermal model for the pressure die casting process is described. The Finite Element Method (FEM) is used for modelling heat transfer in the casting, and the Boundary Element Method (BEM) for the die. The FEM can efficiently account for the non‐linearity introduced by the release of latent heat on solidification, whereas the BEM is ideally suited for modelling linear heat conduction in the die, as surface temperatures are of principal importance. The FE formulation for the casting is based on the modified effective capacitance method, which provides high accuracy and unconditional stability. This is essential for accurate modelling of the pressure die casting process and efficient coupling to the BEM. The BE model caters for surface phenomena such as boiling in the cooling channels, which is important, as this effectively controls the manner in which energy is extracted. The die temperature is decomposed into two components, one a steady‐state part and the other a time‐dependent perturbation. This approach enables the transient die temperatures to be calculated in an efficient way, since only die surfaces close to the die cavity are considered in the perturbation analysis. A multiplicative Schwarz method for non‐overlapping domains is used to couple the individual die blocks and casting. The method adopted makes use of the weak coupling between the domains, which is a result of the relatively high interfacial thermal resistance that is present. Numerical experiments are performed to demonstrate the computational effectiveness of the approach. Predicted die and casting temperatures are compared with thermocouple measurements and good agreement is indicated. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
Erosion corrosion of graded chromium carbide coatings in multi layer structure So far PVD‐ and PECVD‐Layers have proved their value as wear protection mainly on cutting tools for machining. Depending on the composition of the layers not only a reduction in wear but also a reduction in friction is possible, e.g. by integration of hydrogen containing carbon. Furthermore such carbon containing layers use to be electrochemically inert. Thus they don’t corrode in aqueous media. Because they do also have a very dense structure, an application as corrosion protection seems to be promising. For the intended investigations under service‐like erosiv‐corrosiv loading a new testing rig was developed and constructed. The erosiv‐corrosiv loading was achieved by exposure of coated specimen to a flowing medium, that contains abrasive corund‐particles. Thus the erosion‐corrosion‐behaviour of new graded Multilayer‐Chromiumcarbide‐Coatings should be investigated. The aim was to identify the mechanisms of deterioration to promote a further developement of these layers. In addition the potential of PVD/PECVD‐coated low‐alloy steel to be in‐service under such conditions should be evaluated. For comparison an up‐to‐date industrial DLC‐coating and a high‐alloy duplex‐steel were also investigated. As a result of the conducted investigations an application of PVD‐/PECVD‐coated low‐alloy steel under erosive‐corrosive conditions with impingement wear could not yet be recommended. However the graded Multilayer‐Chromiumcarbide‐Coatings have the potential for a good erosion‐corrosion‐protection, if erosion promoting flaws are avoided. Because hard PVD‐ and PECVD‐coatings are relative brittle, a loading with hard particles, which hit the surface under a high angle, is very tough. Hence the question is, if the investigated layers possibly have a better wear behaviour under more abrasive loading in a more tangential flowing medium, which is also typical for in‐service‐conditions. This is intended to be investigated in future tests.  相似文献   

7.
In compound‐cast‐forging of hybrid aluminum parts the positive characteristics of casting and forging processes as well as the different materials are combined. This makes it possible to produce components with complex geometries and different local characteristics. Component areas with high complexity (e. g. with an undercut) are cast, areas that are exposed to high mechanical stresses, are forged. In the conducted investigations a preformed, massive formed semi‐finished part out of a wrought aluminum alloy was joined with a die‐cast aluminum alloy by casting and forming from the casting temperature in one cast‐forging process. The results of the studies show a good joining quality of cast‐forged components made of different aluminum alloys.  相似文献   

8.
Deposition, Characterisation and Application of HMDSO‐based Plasma Polymer Films High quality organosilicone coatings can be produced via plasma enhanced chemical vapor deposition of hexamethyldisiloxane (HMDSO). In this article aspects of deposition, analysis and application of HMDSO/O2 processes are presented. The coatings’ organic/inorganic character can be adjusted by an appropriate combination of plasma power and gas mixture which is shown by XPS. Particularly multi layer and gradient layer systems can be deposited within the same process. Quantitative chemical depth profiling of such layer systems can be performed by secondary neutral mass spectrometry (SNMS). AFM investigations exhibit that the surface roughness of the coatings is determined by the appearance of hemispherical agglomerates, which is more pronounced, the more glass‐like the coatings are. As an example of use it is shown, that an appropriate HMDSO plasma treatment can distinctly improve the tribological behavior of elastomer devices. The presented work is done within a project of the German Federal Ministry of Education and Research (BMBF) entitled: “nano functionalization of interfaces for data‐, textile‐, building‐, medicine‐, bio‐, and aerospace‐ technology”.  相似文献   

9.
(Cr1‐x,Alx)N a review about a multi‐purpose coating system Nitride based coatings claimed a big market share for PVD‐coatings. Especially in the field for high temperature die casting and cutting operations chromium based coatings are well used. These coatings are also used in low temperature processes for the coating of machine parts. In the beginning of the nineties first examinations are done on the ternary system Chromium‐Aluminium‐Nitride. This system shows an excellent corrosion behaviour against many different liquids, but gains also a high hardness for a good wear behaviour. By changing the AlN to CrN content and the coating design CrAlN opens up a wide range for different coating applications. A major step for machine parts was the reducing of coating process temperature beneath 200 °C. This was only possible by using pulsed power supplies. CrAlN shows a very good performance on the fast growing market of coated machine parts e.g. on spindle bearings.  相似文献   

10.
The fatigue results of a high‐pressure die cast of AZ91D magnesium alloy revealed the presence of different types of casting defects, which account for the large scattering in the number of cycles until failure. In this paper, this magnesium alloy has been analysed, and in an effort to reproduce the same surface and material conditions exhibited in automotive service components, the fatigue test samples were manufactured using a die that employs the same casting process and equipment. To examine the fracture surface of all the fatigue tests, a scanning electron microscope was used, and the source of the failure, so as to relate fatigue life with casting defect type, was identified. Five casting defect types that influence the fatigue behaviour were observed and classified: (a) isolated pores (blowholes), (b) micro‐porosity areas, (c) circular shrinkage cavities associated with the contraction and geometry of the casted specimen, (d) surface burrs associated with the die‐casting mould and (e) the presence of oxides or inclusions.  相似文献   

11.
Micro‐tools offer significant promise in a wide range of applications such as cell manipulation, micro‐surgery, and micro/nanotechnology processes. Such special micro‐tools consist of multi‐flexible structures actuated by two or more piezoceramic devices that must generate output displacements and forces at different specified points of the domain and at different directions. The micro‐tool structure acts as a mechanical transformer by amplifying and changing the direction of the piezoceramics output displacements. The design of these micro‐tools involves minimization of the coupling among movements generated by various piezoceramics. To obtain enhanced micro‐tool performance, the concept of multifunctional and functionally graded materials is extended by tailoring elastic and piezoelectric properties of the piezoceramics while simultaneously optimizing the multi‐flexible structural configuration using multiphysics topology optimization. The design process considers the influence of piezoceramic property gradation and also its polarization sign. The method is implemented considering continuum material distribution with special interpolation of fictitious densities in the design domain. As examples, designs of a single piezoactuator, an XY nano‐positioner actuated by two graded piezoceramics, and a micro‐gripper actuated by three graded piezoceramics are considered. The results show that material gradation plays an important role to improve actuator performance, which may also lead to optimal displacements and coupling ratios with reduced amount of piezoelectric material. The present examples are limited to two‐dimensional models because many of the applications for such micro‐tools are planar devices. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
For many applications there is an increasing request to control the deposition process on an atom layer scale. This offers a lot of advantages like in accuracy, layer homogeneity and tailoring of layer properties. On the other hand the speed and throughput of the process should not suffer from the control on an atom layer scale as it is the case for classical atom layer deposition (ALD). For optical applications especially high‐end interference filter coatings we developed a plasma assisted reactive magnetron sputtering process in combination with a high speed drive for the substrates. This combination allows controlling the layer thicknesses and layer properties on an atom layer scale while maintaining a high deposition rate. The advantages of this process are demonstrated on single layer results of SiO2, HfO2, ZrO2, Ta2O5 and mixed oxides of SiO2‐Nb2O5. Morphology, surface roughness, film stress, refractive index and losses are controlled by the oxygen partial pressure, the substrate temperature, the energy input by the sputtering ‐and assist process and by cosputtering. The outstanding performance of high‐end interference filter coatings like a multi notch filter for fluorescence microscopy is achieved by the very stable and reproducible deposition process in combination with an advanced thickness control strategy based on in‐situ optical thickness control and time control.  相似文献   

13.
Load adjusted shaping of forming tools using build‐up PTA welding For the improvement of the mechanical‐technological properties of the forming tools (in particular medium sized component‐geometries) the build‐up plasma deposition‐welding was established as a manufacturing process. It could be proven that the thermo‐mechanical characteristics of these tools are improved by using of cobalt and nickel basis alloys. With the embedding of carbides in the cobalt basis matrix the most endangered surface regions of the tools may to be better protected and the life times significantly increase compared with the up to now with conventional materials manufactured components. With manufactured and tested segments of a transverse‐rolling tool it was possible to validate whether the won knowledge is transferable into the practice.  相似文献   

14.
Application of Wear Resistant PACVD-Coatings in Aluminium Diecasting under Economical and Ecological Aspects Aluminium pressure diecasting is a frequently applied manufacturing process for the near netshape production of precision parts. State of the art production techniques still demand considerable amounts of die lubricants. But the side effects of these lubricants include a decrease in surface quality of the cast part as well as a prolongation of the casting cycle time. The job quality decreases and the waste and exhaust disposal during production and application of lubricants is ecologically risky. In this study different wear resistant coating systems have been developed in order to minimize the use of die lubricants in the casting process while at the same time increasing the service life of the diecasting tools. Nitrides, carbides and borides of titanium were synthesized by means of DC-pulse-PACVD. The influence of the process parameters gas composition, pressure, voltage and pulse/pulse repetition ratio was investigated. Compositional analysis was performed by analytical methods such as XRD, EDS, WDS and SIMS. Hardness, adhesion and friction behaviour of the layers were determined in order to describe their mechanical properties. The wetting angle was determined and the corrosion resistance was evaluated in dip tests in aluminium melt. A selection of the best coatings was then compared in diecasting praxis tests under tightened-up conditions reducing the amount of lubricants. TiN, Ti(B,N), TiC and multilayers of the system Ti-C-N were deposited exhibiting a wide range of stoichiometry. The coatings reached hardness values of up to 4400 HK0.005 and the friction coefficient μ was in the range of 0.3. In the diecasting praxis test the amount of die lubricant could be reduced by 97%. Under most severe conditions all layer types led to a minimum increase in the lifetime of the tool of factor 60 compared to an untreated dummy. A strong dependence on the layer type and on its stoichiometry could be observed. Ti(B,N) as the most successful coating in this study has not yet shown any sign of failure and already achieved an increase in lifetime of 300 times.  相似文献   

15.
High‐selective absorber coatings for solar thermal collectors Highly selective absorber coatings are necessary for the effective operation of state‐of‐the‐art solar thermal collectors. The thin film gradient optical coating with its spectrally selective characteristics achieves high solar absorptance combined with low thermal emittance. Such complex multi‐layer systems are produced in modular vacuum coating processes. Industrial air‐to‐air coating lines allow the continuous coating of metal bands in a pass‐through process and provide absorber coatings which meet highest demands for efficiency, durability and esthetics.  相似文献   

16.
Quasi‐static compressive and impact behaviours of multi‐layered corrugated paperboard (MLCP) cushioning structure were analysed by a recently proposed virtual mass method. First, virtual mass method was applied and verified analytically to solve quasi‐static compressive responses for representative two‐layer corrugated paperboard cushioning structure. The results show that the two layers in the cushioning structure reach the buckling state in chronological order because of the existence of the small perturbations triggered by inertial force related to virtual mass, which leads to the two typical stress peaks in stress–strain curves. Second, the quasi‐static compressive behaviours of MLCP cushioning structure were further studied numerically, showing that the buckling order of multi‐layer cushioning structure depends on virtual mass, but the stress–strain curves remain unchanged when the virtual mass is smaller than some certain value. Finally, quasi‐static and dynamic impact tests of MLCP cushioning structure composed of C‐flute corrugated paperboard were carried out to further validate the capacity of the virtual mass method to describe layer‐wise collapse mechanism given the constitutive relationship of the monolayer corrugated paperboard. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
AlSi9Cu3(Fe) aluminum alloy fatigue test specimens were produced by high pressure die casting (HPDC) and vacuum‐assisted die casting (VPDC) techniques. Non‐destructive material tests (NDT) have been performed on cast specimens by computed tomography (CT). Uniaxial fatigue tests with two stress ratios of R = ?1 and R = 0.1 have been performed in the high cycle fatigue (HCF) regime, and the CT results were reassigned after the fatigue test in order to identify the origin of the failure. The aim of this paper is to establish a relationship between the CT result and fatigue failure of die cast specimens. The location and the size of the casting defect determine the specimen fatigue life. It has also been found that the fatigue life is determined not only by the size of the defect but also by its location with respect to the position of the highly stressed area. The results can be used to judge the applicability of cast parts after non‐destructive testing.  相似文献   

18.
Motivated by nano‐scale experimental evidence on the dispersion characteristics of materials with a lattice structure, a new multi‐scale gradient elasticity model is developed. In the framework of gradient elasticity, the simultaneous presence of acceleration and strain gradients has been denoted as dynamic consistency. This model represents an extension of an earlier dynamically consistent model with an additional micro‐inertia contribution to improve the dispersion behaviour. The model can therefore be seen as an enhanced dynamic extension of the Aifantis' 1992 strain‐gradient theory for statics obtained by including two acceleration gradients in addition to the strain gradient. Compared with the previous dynamically consistent model, the additional micro‐inertia term is found to improve the prediction of wave dispersion significantly and, more importantly, requires no extra computational cost. The fourth‐order equations are rewritten in two sets of symmetric second‐order equations so that ‐continuity is sufficient in the finite element implementation. Two sets of unknowns are identified as the microstructural and macrostructural displacements, thus highlighting the multi‐scale nature of the present formulation. The associated energy functionals and variationally consistent boundary conditions are presented, after which the finite element equations are derived. Considerable improvements over previous gradient models are observed as confirmed by two numerical examples. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
The pre‐treatment of magnesium‐based components plays an important role in surface engineering technology to guarantee good adhesion of the final coating system to the magnesium substrate in order to achieve good corrosion resistance. This paper focuses on the influence of two different die lubricants—one based on mineral oil, the other on siloxane—on the pickling and conversion treatment of an AM30 alloy. The surface conditions after casting, pickling, and conversion treatment were determined by X‐ray‐induced photoelectron spectroscopy, spark erosion, optical emission spectroscopy, IR spectroscopy, and scanning electron microscopy (including EDX). The influence of the different die lubricants on the result of the pickling treatment in terms of surface morphology and composition was significant. The mineral–oil‐based lubricant was found to be removed more easily and uniformly from the surface. Only sufficient removal of the die lubricants can guarantee homogeneous and uniform formation of the conversion coating.  相似文献   

20.
Public, hidden, and forensic features either encoded or directly legible are used for authentication. Fabry‐Perot layer stacks as information carriers in combination with imaging ellipsometry as optical read‐out system provide all‐in‐one anti‐counterfeiting capability that may establish the new security level “encoded forensic”. Different layer designs are described with regard to all three security levels: public features (e.g. color and tilt effect) perceptible by the human eye, hidden features (e.g. spectroscopic response in the UV or IR), and forensic features (ellipsometric quantities Ψ and Δ as a function of wavelength λ and angle of incidence AOI). Physically uncloneable functions (PUF) could be realized as a result of a multi‐material and a multi‐parameter deposition approach as well as by means of specific design features of the Fabry‐Perot layer stack. Hence, they are not subject to any reverse engineering strategies. Examples of stratified, micro‐structured, and laser‐modified Fabry‐Perot layer systems are considered that may be used at all perception levels (e.g. human eye, bar code reader, and imaging ellipsometry) for authentication against product counterfeiting and related areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号