首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The impact of river incision in response to channelization on the conditions of overbank deposition is shown by the study of two montane rivers from the upper Vistula drainage basin, southern Poland. The Wisl/oka River had insufficient energy to destroy the river‐control structures and remained laterally stable in the course of the channel downcutting. Under such conditions, the incision has raised the relative elevation of the floodplain above the river bed, thereby reducing considerably the frequency of overbank flows, and increasing concentration of suspended sediment transport within the incised channel. On the high‐energy Skawa, the long periods of incision of the channelized river alternated with the shorter periods of lateral channel migration over the twentieth century. This has led to the formation of an incised meander belt, within which flood flows are constricted, and where the high velocities of the floodplain flows inhibit overbank deposition. Field observations confirm an insignificant role played nowadays by floodplain sedimentation in the valleys of both rivers. This study shows that the potential of the floodplains of the Carpathian tributaries to the Vistula for sediment storage has been dramatically reduced over the few past decades as a result of the channelization‐induced incision of the rivers. The frequency of overbank flows has decreased considerably on the rivers draining the eastern part of the Polish Carpathians, and the majority of the suspended sediment is routed within the resultant enlarged channels. In the western part of the mountains, high velocities of the floodplain flows restrict overbank deposition on the narrow floodplains developed along incised channels. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
Most of the large rivers are heavily degraded and lack near‐natural conditions due to high human pressure (agricultural use and settlements) especially on former inundation areas. Hence, it is rarely possible to ‘restore’ predisturbance conditions of rivers and their floodplains. Further, river or floodplain restoration programs are often based on type‐specific reference conditions. Those reference conditions are mainly determined on the basis of historical maps not giving any information of, for example, sediment supply, flood frequency and vegetation cover (density). Especially for improving the ecological status of rivers with abandoned channel features, key habitats for target fish species have to be restored by reconnecting floodplains and their secondary channel system. In addition, because of the necessity of improving the ecological status, there is growing interest in interdisciplinary river restoration techniques. Within the presented article, an integrative concept is derived based on Light Detection and Ranging measurements and numerical modelling with respect to river dynamics (hydrologic and morphological). Further habitat modelling, based on unsteady depth‐averaged two‐dimensional hydrodynamics, is applied with a focus on the mesounit scale. For testing the conceptual model, various river reaches at the Morava River were selected, featuring different morphological characteristics. It was found that the applied management concept allows considering the important issues of river dynamics (morphological/hydrologic) using a flow‐ and flood‐pulse approach for identifying bottlenecks of target species at the Morava River. The reconnection of abandoned channels will result in an increase of hydromorphological heterogeneity and/or woody debris within the study reach. This might be of high relevance for habitat features (e.g. backwater habitats) especially for flow pulses between low flow and mean flow and/or in reaches without abandoned channels between low‐flow and the bankfull stage. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Hydrological regime, physical habitat structure and water chemistry are interacting drivers of fish assemblage structure in floodplain rivers throughout the world. In rivers with altered flow regimes, understanding fish assemblage responses to flow and physico‐chemical conditions is important in setting priorities for environmental flow allocations and other river management strategies. To this end we examined fish assemblage patterns across a simple gradient of flow regulation in the upper Murray–Darling Basin, Australia. We found clear separation of three fish assemblage groups that were spatially differentiated in November 2002, at the end of the winter dry season. Fish assemblage patterns were concordant with differences in water chemistry, but not with the geomorphological attributes of channel and floodplain waterholes. After the summer‐flow period, when all in‐channel river sites received flow, some floodplain sites were lost to drying and one increased in volume, fish assemblages were less clearly differentiated. The fish assemblages of river sites did not increase in richness or abundance in response to channel flow and the associated potential for increased fish recruitment and movement associated with flow connectivity. Instead, the more regulated river's fish assemblages appeared to be under stress, most likely from historical flow regulation. These findings have clear implications for the management of hydrological regimes and the provision of environmental flows in regulated rivers of the upper Murray–Darling Basin. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
River regulation induces immediate and chronic changes to floodplain ecosystems. We analysed both short‐term and prolonged effects of river regulation on the growth patterns of the keystone riparian tree species Fremont cottonwood (Populus deltoides ssp. wislizenii) at three upper Colorado River Basin rivers having different magnitudes of flow regulation. We compared cottonwood basal area increment on (i) the regulated Upper Green River below Flaming Gorge Dam; (ii) the adjacent free‐flowing Yampa River; and (iii) the partially regulated Lower Green River below their confluence. Our goal was to identify the hydrologic and climatic variables most influential to tree growth under different flow regimes. A dendrochronological analysis of 182 trees revealed a long‐term (37 years) trend of declining growth during the post‐dam period on the Upper Green, but trees on the partially regulated Lower Green maintained growth rates similar to those on the reference Yampa River. Mean annual, mean growing season, and peak annual discharges were the multicollinear flow variables most correlated to growth during both pre‐dam and post‐dam periods at all sites. Annual precipitation was also highly correlated with tree growth, but precipitation occurring during the growing season was poorly correlated with tree growth, even under full river regulation conditions. This indicates that cottonwoods rely primarily on groundwater recharged by river flows. Our results illustrate the complex and prolonged effects of flow regulation on floodplain forests, and suggest that flow regulation designed to simulate specific aspects of flow regimes, particularly peak flows, may promote the persistence of these ecosystems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Oxbow lakes, sloughs and other floodplain depressions associated with former channel positions are critical elements of floodplain hydrology, geomorphology and ecology. They comprise key elements of wetland and aquatic habitats and have important influence on the storage and routing of floodwaters. The hydrological connectivity between active river channels and floodplain depressions varies considerably in a qualitative sense, even within a single fluvial system. Several oxbows, sloughs and paleochannels were examined on the lower Sabine River, Texas/Louisiana, during a period of high but sub‐bankfull flow as well as at lower flows. Six different types of surface water connectivity with the main, active channel were identified: (i) flow through—a portion of the river flow regularly passes through the feature and returns to the main channel; (ii) flood channel—there is no hydraulic connection at normal flows, but at high flows the channels convey discharge, at least part of which returns to the main channel; (iii) fill and spill—the features fill to a threshold level at high flows and then overflow (mainly via ephemeral channels) into flood basins; (iv) fill and drain—the features fill at high river discharges but do not (except in large floods) overflow because as river discharge declines, water drains back to the river; (v) tributary occupied—tributaries draining to the abandoned channel continue to occupy it, flowing through it to the active channel; and (vi) disconnected—no flow is exchanged except during large floods. The age or stage of infilling and the relative elevation of abandoned channels are important first‐order controls of hydrological connectivity, but the lateral distance from the active channel is poorly related. Other critical controls are whether the cutoff section receives tributary input and whether a tie channel forms. The alluvial valley geomorphic context—specifically the presence of a meander belt ridge and flood basins—is also critical. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
In large river ecosystems, the timing, extent, duration and frequency of floodplain inundation greatly affect the quality of fish and wildlife habitat and the supply of important ecosystem goods and services. Seasonal high flows provide connectivity from the river to the floodplain, and seasonal inundation of the floodplain governs ecosystem structure and function. River regulation and other forms of hydrologic alteration have altered the connectivity of many rivers with their adjacent floodplain – impacting the function of wetlands on the floodplain and in turn, impacting the mainstem river function. Conservation and management of remaining floodplain resources can be improved through a better understanding of the spatial extent and frequency of inundation at scales that are relevant to the species and/or ecological processes of interest. Spatial data products describing dynamic aspects floodplain inundation are, however, not widely available. This study used Landsat imagery to generate multiple observations of inundation extent under varying hydrologic conditions to estimate inundation frequency. Inundation extent was estimated for 50 Landsat scenes and 1334 total images within the Gulf Coastal Plains and Ozarks Landscape Conservation Cooperative (GCPO LCC), a conservation science partnership working in a 730 000‐km2 region in the south central USA. These data were composited into a landscape mosaic to depict relative inundation frequency over the entire GCPO LCC. An analytical methodology is presented for linking the observed inundation extent and frequency with long‐term gage measurements so that the outcomes may be useful in defining meaningful critical thresholds for a variety of floodplain dependent organisms as well as important ecological processes. Published 2015. This article is a U.S. Government work and is in the public domain in the USA  相似文献   

7.
In large European rivers the chemical water quality has improved markedly in recent decades, yet the recovery of the fish fauna is not proceeding accordingly. Important causes are the loss of habitats in the main river channels and their floodplains, and the diminished hydrological connectivity between them. In this study we investigate how river regulation has affected fish community structure in floodplain waterbodies of the rivers Rhône (France), Danube (Austria), Rhine and Meuse (The Netherlands). A typology of natural and man‐made aquatic habitats was constructed based on geomorphology, inundation frequency and ecological connectivity, along the transversal river–floodplain gradient, i.e. perpendicular to the main stream of the river. Fish species were classified in ecological guilds based on their flow preference, reproduction ecology and diet, and their status on national red lists was used to analyse the present state of the guilds and habitats. Ecological fish guilds appear to be good indicators of ecological integrity and functioning of river–floodplain systems. A transversal successional gradient in fish community structure that bears some resemblance to the gradient found in natural rivers can still be discerned in heavily regulated rivers. It resembles the longitudinal river gradient; even some predictions of the River Continuum Concept are applicable. Overall, richness and diversity of species and ecological guilds decrease with decreasing hydrological connectivity of floodplain waterbodies. Anthropogenic disturbances have affected fish species unevenly: guilds of specialized species that are highly adapted to specifically riverine conditions have declined far more than generalist species. Fish habitats in the main and secondary channels have suffered most from regulation and contain the highest percentage of threatened species. Rheophilic fishes have become rare because their lotic reproductive habitats are severely degraded, fragmented, absent or unreachable. Limnophilic fishes have become rare too, mainly as a result of eutrophication. Eurytopic fishes have become dominant everywhere. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
An understanding of the factors controlling the permanent and episodic links between the main stem of a river and the ecosystems of its alluvial floodplain is necessary for evaluating the influence of modern river processes on floodplain ecology and habitat diversity and for the successful implementation of flow regimes that meet human needs for water in a manner that sustains the ecological integrity of affected systems. In this study, we examined relationships between river hydrology and lateral hydrological connectivity, which is crucial to directing fluxes of water, material, and organisms into and across a floodplain. We did so by translating measures of river discharge for the Congaree River into high resolution maps of flood conditions for the floodplain at Congaree National Park using a 2D flood inundation model. Utilizing a graph network approach, we then analyzed the connectivity of a key wetland ecosystem, Taxodium‐Nyssa forested swamps, to the main stem river and to each other under different flows. Our results underscore that floodplain connectivity is initiated at sub‐bankfull discharges and does not depend on levee overtopping, while also clarifying that various sources of connectivity are triggered at different flow levels in specific reaches. Further, our findings demonstrate the sensitive and non‐linear response of floodplain connectivity to river flows and provide useful information to facilitate the management of flood processes in the Congaree River watershed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
运用黄河下游水文学冲淤计算模型,对2002年和2009年小浪底水库调水调沙试验方案进行了计算,计算结果与实测值吻合较好。以2002年调水调沙总水量为控制指标,选取2002年地形(长期淤积)和2009年地形(长期冲刷)为边界条件,以清水下泄和来沙系数为0.01 kg.s/m6两类洪水,按照不漫滩、平滩和小漫滩三种方案,计算了黄河下游河道在不同边界条件下的滩槽冲淤量,以及各河段平滩流量的变化特征,对比分析了两类洪水在不同方案下的滩槽冲淤效果。对于清水冲刷,当以下游河道的最大平滩流量控制小浪底水库下泄流量时,全下游的冲刷效益最大。对于来沙系数为0.01kg.s/m6的高含沙水流,流量级越大,全下游的主槽冲刷量和平滩流量增幅越大,但淹没损失也较大。需要通过进一步研究,得到使全下游冲刷效益和淹没损失达到最优化的流量,作为小浪底水库的调控下泄流量。  相似文献   

10.
The dynamic nature of alluvial floodplain rivers is a function of flow and sediment regimes interacting with the physiographic features and vegetation cover of the landscape. During seasonal inundation, the flood pulse forms a ‘moving littoral’ that traverses the plain, increasing productivity and enhancing connectivity. The range of spatio-temporal connectivity between different biotopes, coupled with variable levels of natural disturbance, determine successional patterns and habitat heterogeneity that are responsible for maintaining the ecological integrity of floodplain river systems. Flow regulation by dams, often compounded by other modifications such as levee construction, normally results in reduced connectivity and altered successional trajectories in downstream reaches. Flood peaks are typically reduced by river regulation, which reduces the frequency and extent of floodplain inundation. A reduction in channel-forming flows reduces channel migration, an important phenomenon in maintaining high levels of habitat diversity across floodplains. The seasonal timing of floods may be shifted by flow regulation, with major ramifications for aquatic and terrestrial biota. Truncation of sediment transport may result in channel degradation for many kilometres downstream from a dam. Deepening of the channel lowers the water-table, which affects riparian vegetation dynamics and reduces the effective base level of tributaries, which results in rejuvenation and erosion. Ecological integrity in floodplain rivers is based in part on a diversity of water bodies with differing degrees of connectivity with the main river channel. Collectively, these water bodies occupy a wide range of successional stages, thereby forming a mosaic of habitat patches across the floodplain, This diversity is maintained by a balance between the trend toward terrestrialization and flow disturbances that renew connectivity and reset successional sequences. To counter the influence of river regulation, restoration efforts should focus on reestablishing dynamic connectivity between the channel and floodplain water bodies.  相似文献   

11.
Based on detailed historical surveys from 1812, the natural riverine landscape of a 10.25‐km‐long reach of the Danube River in the Austrian Machland region prior to channelization is analysed. Anthropogenically induced changes of fluvial dynamics, hydrological connectivity and aquatic habitat composition are discussed, comparing the situations following channelization (1925) and flow regulation (1991). In 1812 the alluvial river–floodplain system of the Danube River comprised a highly complex channel network, numerous gravel bars and extensive islands, with the main channel and side arms (eupotamon) representing about 97% of the entire water surface at low flow. The floodplain was characterized by relatively flat terrain and numerous natural trenches (former active channels) connected to the main channel. These hydromorphological conditions led to marked expansion/contraction of the water surface area at water level fluctuations below bankfull (‘flow pulse’). The high degree of hydrological connectivity enabled intensive exchange processes and favoured migrations of aquatic organisms between the river and floodplain habitats over a period of approximately 90 days per year. Overall in 1812, 57% of the active zone (active channels and floodplain) was inundated at bankfull water level. Channelization and construction of hydropower plants resulted in a truncated fluvial system. Consequently, eupotamal water bodies decreased by 65%, and gravel/sand bars and vegetated islands decreased by 94% and 97%, respectively, whereas the area of the various backwaters doubled. In 1991 the former ‘flow pulse’ was halved due to artificial levees and embankments, greatly diminishing hydrological connectivity and decoupling large areas of the floodplain from the main channel. Active overflow, formerly playing an important role, is now replaced by backwater flooding and seepage inflow in isolated water bodies. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
The majority of rivers in the Australian tropics possess near‐natural flow regimes and are an ecological asset of global significance. We examined flow variability in large floodplain rivers in the Gulf of Carpentaria, northern Australia, and the potential ecological impacts of future water resource development (WRD). Flow metrics based on long‐term records were used to classify flow regimes and predict hydrological drivers of ecological function. Flow regimes of selected rivers were then compared with those simulated for pre‐ and post‐WRD flows in the Darling River, a highly modified river in Australia's south‐east. Generally, rivers were classified as typically ‘tropical’ (more permanent, regular flows) or ‘dryland’ (more ephemeral, with greater flow variability). In addition, all rivers displayed wet–dry seasonality associated with changes in flow magnitude or number of zero‐flow days. We propose that these features (flow permanence and regularity; flow variability and absence; wet–dry seasonality) are the key hydrological drivers of biodiversity and ecological function in the floodplain rivers of Australia's north. In terms of WRD, inter‐annual flow variability was predicted to increase or decrease depending on rivers' natural flow regimes, specifically their tendency toward lower or higher flow magnitudes. Either outcome is expected to have adverse effects on the biodiversity and ecological function of these relatively pristine rivers and floodplain habitats. In particular, reduced and homogenized habitat, loss of life‐history cues, inhibited dispersal and shifts in community composition, as a result of WRD, threaten the ecological integrity of rivers adapted to the three hydrological drivers above. These findings serve as a caution for careful consideration of WRD options for rivers in the Australian tropics and for those with similar flow regimes the world over. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
During the early 1990s a multi‐component research programme was initiated by the Northern River Basins Study (NRBS) in Canada to answer the question: How does and how could flow regulation affect the aquatic ecosystem? Research focused on the major headwaters of the Mackenzie River, the Peace and Slave rivers, which became regulated in 1968 by the W.A.C. Bennett Dam in the Rocky Mountains. The lack of knowledge about the hydroecology of large northern rivers as well as a paucity of data for this relatively isolated basin required that studies be undertaken to assess how flow regulation had modified the physical template of this system. Research focused on quantifying the regulation effects on the flow regime, ice conditions, fluvial geomorphology and riparian vegetation of the Peace and Slave rivers and the Slave River Delta. Results of the NRBS studies indicate that regulation of the Peace River has shifted the pattern of seasonal flows and damped flow extremes creating a less variable annual regime. Increased winter releases from the reservoir have virtually eliminated the formation of a complete winter ice cover for a significant distance below the dam and delayed ice‐cover formation farther downstream. Higher ice levels that accompany increased winter flows are thought to affect the frequency and magnitude of ecologically important ice‐induced floods that occur during the spring. Although more difficult to link solely to the effects of flow regulation, pronounced morphologic and vegetation changes have been observed along the Peace River, including channel narrowing via the abandonment of secondary/backwater channels and in‐channel shoaling along the lower reaches. Vegetation succession has been especially evident on abandoned bar surfaces. Morphological changes were also observed in the Slave River Delta, particularly along the ecologically sensitive outer margin of the delta. Copyright © 2002 Environment Canada. Published by John Wiley & Sons, Ltd.  相似文献   

14.
Periodic flooding plays a key role in the ecology of floodplain rivers. Damming of such rivers can disturb flooding patterns and have a negative impact on commercial fish yield. The Volga River, the largest river in Europe, has a regulated flow regime after completion of a cascade of dams. Here, we study effects of damming on long‐term discharge variability and flood pulse characteristics. In addition, we evaluate the effects of the altered flood pulse on floodplain ecosystem functioning and commercial fish yields. Our results indicate that both flood pulse and fish populations of the Volga–Akhtuba floodplain have varied considerably over the past decades. After damming, annual maximum peak discharges have decreased, minimum discharges increased, but average discharges remained similar to pre‐damming conditions. Moreover, because of bed level incision of over 1.5 m, a higher discharge is needed to reach bankfull level and inundate the floodplains. Despite this significantly altered hydrological regime and subsequent morphological changes, current discharge management still provides significant spring flooding. However, commercial fish catches did decrease after damming, both in the main channel and in the floodplain lakes. All catches were dominated by species with a eurytopic flow preference, although catches from the main channel contained more rheophilic species, and floodplain catches contained more limnophilic and phytophilic species. The strong increase of opportunistic gibel carp (Carassius gibelio) around 1985 was apparent in the main channel and the floodplain lakes. Despite the hydrological changes, the decrease in overall catches, and the upsurge of gibel, we found a strong positive effect of flood magnitude in the previous year on commercial fish yield in the floodplain lakes. This suggests that under the current discharge management there still is an increased fish growth and/or survival during high floods and that functioning of the floodplain is at least partly intact. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
This paper evaluates the causes and effects of the hydrogeomorphological alteration of the central reach of the Ebro River (NE Spain). The Ebro River is one of the largest Mediterranean rivers. In this reach, it develops a meandering planform in a wide floodplain. Geographic Information System (GIS) analyses of historic aerial photographs, analysis of hydrologic data and measurement of various indicators linked to the fluvial morphology and the structure and distribution of the riparian vegetation led to the establishment of the prevailing processes in the dynamics of this river. Statistical analyses conducted on some of the main components of the flow regime, including floods, droughts and flow duration curves, showed a role for these components in river dynamics. Similarly, a thorough analysis of the evolution of the aforementioned indicators was performed to identify and measure the effects of the hydrological regulation of the river. These indicators were measured in 1927, 1956 and 2003 for a 106 km reach. The geomorphic dynamics of the Ebro River in its central reach reflect a remarkable tendency for stabilization and rigidification of the channel. The active river corridor has largely been modified, primarily in the second half of the twentieth century. The corridor lost a huge portion of its width and extension, the channel suffered an intense narrowing and the natural mobility of the meander train decayed proportionally. The structure and distribution of the riparian vegetation were completely transformed. The riparian forest lost its original function, behaving as a linear corridor and was notably continuous and very close to the channel thalweg. The vegetation colonized most of the previously active channel, contributing to the loss of the natural dynamics of the river. The hydrological analyses suggest that the large morphological modification of the river planform and the parallel alteration of the riparian forests are not to be seen as a consequence of a loss of the attributes of natural floods. On the contrary, these extreme hydrological events only generate slight alterations due to river regulation and are not capable of enhancing the aforementioned evolution. Nevertheless, a profound change in the attributes of the low (summer) flows was found. The modification of the low flows was studied through its relationship with the global evolution of the geomorphic indicators and the riparian forest indicators. The results show the relative role played by high and low flows in the evolution of the river dynamics. These results are used to propose a future scenario of ecohydrological management in the central reach of the Ebro River. This scenario is intended to improve its ecological status and recover, at least partially, its natural dynamics. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
To improve understanding of natural and managed flow regimes in data‐sparse regulated river systems in montane areas, the commonly used Hydrologiska Byråns Vattenbalansavdelning (HBV) conceptual run‐off model was adapted to incorporate water regulation components. The extended model was then applied to the heavily regulated river Lyon (391 km2) in Scotland to reconstruct the natural flow regime and to assess the impacts of regulation at increasing spatial scales. Multi‐criteria model evaluation demonstrated that the model performed well in capturing the dominant catchment processes and regulation effects, especially at the timescales at which operation rules apply. The main change as a result of regulation in the river Lyon is a decrease in inter‐annual and intra‐annual variability of all elements of the flow regime, in terms of magnitude, frequency, and duration. Although these impacts are most pronounced directly downstream of the impoundments, the regulation effects propagate throughout the river system. The modelling approach is flexible and widely applicable and only limited amounts of data are required. Moreover, results are easily communicated to stakeholders. It has the potential to contribute to the development of flow regimes that may be more beneficial to the ecological status of rivers. In the case of the river Lyon, it is likely that this involves a more variable release regime. The approach developed here provides a tool for assessing impacts on flow regimes and informing environmental flows in other data‐sparse regions with heavily regulated montane river systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
黄河水量统一调度与调水调沙对河口的生态水文影响   总被引:2,自引:0,他引:2  
从具有生态学意义的流量、频率、出现时间、持续时间和变化率等5种水文要素出发,采用水文变化指标体系定量评估了黄河水量统一调度与调水调沙对河口段生态水文情势的影响,讨论了河口环境水流需求以及调水调沙后水文情势对环境水流的满足程度。研究结果表明,与水量统一调度前相比,水量统一调度与调水调沙后利津断面水文情势有所改善,年极小值流量明显增加,但是水文过程变化率降低,洪水漫滩过程消失,水文过程趋于平缓。目前河口段水文情势能够满足枯水期适宜生态流量需求,汛前4—5月关键期无法满足适宜生态流量与流量脉冲过程,汛期除缺乏洪水脉冲过程外,基本能够满足高流量输沙需求。  相似文献   

18.
This study applies the functional flows model (FFM) that integrates hydrogeomorphic processes and ecological functions to assess physical habitat. Functional flows are discharge values that serve ecological uses. The model was adjusted to evaluate gravel‐bed riffle functionality for fall‐run Chinook salmon with respect to river rehabilitation on the Mokelumne River and flood‐induced channel change on the Yuba River. The goal was to test if differences in ecological performance were traceable to differences in hydrogeomorphic conditions. Ecological functions studied were bed occupation (spawning, incubation and emergence) and bed preparation (river bed reworking periods)‐ both reliant on shear stress dynamics. Model outputs included number of days that have functional flows, ranges of functional flows that provide favourable sediment transport stages and the efficiency of a site to produce functional flows. Statistical significance of results was tested using non‐parametric tests. Functional flows analyses before and after geomorphic alteration indicate that river rehabilitation on the lower Mokelume River increased the number of days with functional flows, while the Yuba River May 2005 flood increased the functional ranges of flows for the test sites. Reach‐scale analyses indicated similar ecological performance at reference sites in both rivers. A comparison between both rivers showed that despite a greater geomorphic potential of the Mokelumne River sites to have functional flows, Yuba River sites actually experienced better ecological performance for fall‐run Chinook salmon freshwater life stages due to greater flow availability. The FFM provided an objective tool to assess changes in ecological functionality at hydrogeomorphically dynamic sites. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Flow regime characteristics (magnitude, frequency, duration, seasonal timing and rates of change) play a primary role in regulating the biodiversity and ecological processes in rivers. River classification provides the foundation for comparing the hydrologic regimes of rivers and development of hydro‐ecological relationships to inform environmental flow management and river restoration. This paper presents a classification of natural flow regimes and hydrologic changes due to dams and floodgates in the Huai River Basin, China, in preparation for an environmental flow assessment. The monthly natural flow regime of 45 stations in the upper and middle Huai River Basin were simulated for the period 1963–2000, based on the hydrological model SWAT (Soil and Water Assessment Tool). Six classes of flow patterns (low or high discharge, stable or variable, perennial or intermittent, predictable or unpredictable) were identified based on 80 hydrologic metrics, analysed by hierarchical clustering algorithms. The ecologically relevant climatic and geographic characteristics of these flow classes were tested for concordance with, and to strengthen, the hydro‐ecological classification. The regulation of natural flow patterns by dams and floodgates changed flows at some locations within each flow class and caused some gauges to shift into another class. The research reported here is expected to provide a foundation for development of hydro‐ecological relationships and environmental flow methods for wider use in China, as well as setting a new scientific direction for integrated river basin management in the Huai River Basin. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
The Pantanal wetland of Brazil, a vast complex of seasonally inundated floodplains along the Paraguay River, is renowned for its outstanding biological resources. A proposed navigation project known as the Paraguay–Paraná Waterway (or Hidrovía) would deepen the Paraguay River channel to facilitate year‐round navigation through the Pantanal. The possibility of decreases in river levels (stage) has aroused concerns in relation to the potential environmental impacts, however the poor understanding of the hydrological relationships between rivers and floodplains has hampered evaluation of these impacts. The present study evaluates the potential impact of river modifications on adjacent floodplains by examining the relationship between the Paraguay River stage and the extent of floodplain inundation. Satellite observations of flooded area (from passive microwave emission; monthly data for 1979–1987) are plotted against river stage from several stations throughout the region to show the stage–inundation relationships for eight subregions along the Paraguay River. Scenarios in which the Paraguay River stage is decreased from the 20th and 80th percentile values reveal large potential impacts on inundation. For stage decreases of 0.10 and 0.25 m, the total flooded area is reduced by 1430 and 3830 km2 at low‐water, and by 2410 and 5790 km2 at high‐water, respectively. The floodplains of the two northernmost subregions appear to be most susceptible to reductions in flooding, losing more than half of their flooded area with a 0.25‐m decrease in the low‐water stage. The ecological impacts of these reductions in flooded area may be particularly severe at low water, when the few areas that typically remain flooded throughout the dry season serve as important refuges for aquatic animals. These results underscore the need for better understanding of the hydrology of the integrated river floodplain systems in the Pantanal before river channel modifications are carried out. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号