共查询到20条相似文献,搜索用时 0 毫秒
1.
Hydrologic connectivity between the channel and floodplain is thought to be a dominant factor determining floodplain processes and characteristics of floodplain forests. We explored the role of hydrologic connectivity in explaining floodplain forest community composition along streams in northern Missouri, USA. Hydrologic analyses at 20 streamgages (207–5827 km2 area) document that magnitudes of 2‐year return floods increase systematically with increasing drainage area whereas the average annual number and durations of floodplain‐connecting events decrease. Flow durations above the active‐channel shelf vary little with increasing drainage area, indicating that the active‐channel shelf is in quasi‐equilibrium with prevailing conditions. The downstream decrease in connectivity is associated with downstream increase in channel incision. These relations at streamflow gaging stations are consistent with regional channel disturbance patterns: channel incision increases downstream, whereas upstream reaches have either not incised or adjusted to incision by forming new equilibrium floodplains. These results provide a framework to explain landscape‐scale variations in composition of floodplain forest communities in northern Missouri. Faust ( 2006 ) had tentatively explained increases of flood‐dependent tree species, and decreases of species diversity, with a downstream increase in flood magnitude and duration. Because frequency and duration of floodplain‐connecting events do not increase downstream, we hypothesize instead that increases in relative abundance of flood‐dependent trees at larger drainage area result from increasing size of disturbance patches. Bank‐overtopping floods at larger drainage area create large, open, depositional landforms that promoted the regeneration of shade‐intolerant species. Higher tree species diversity in floodplains with small drainage areas is associated with non‐incised floodplains that are frequently connected to their channels and therefore subject to greater effective hydrologic variability compared with downstream floodplains. Understanding the landscape‐scale geomorphic and hydrologic controls on floodplain connectivity provides a basis for more effective management and restoration of floodplain forest communities. Published 2013. This article is a U.S. Government work and is in the public domain in the USA. 相似文献
2.
Jonathan D. Phillips 《河流研究与利用》2013,29(2):149-160
Oxbow lakes, sloughs and other floodplain depressions associated with former channel positions are critical elements of floodplain hydrology, geomorphology and ecology. They comprise key elements of wetland and aquatic habitats and have important influence on the storage and routing of floodwaters. The hydrological connectivity between active river channels and floodplain depressions varies considerably in a qualitative sense, even within a single fluvial system. Several oxbows, sloughs and paleochannels were examined on the lower Sabine River, Texas/Louisiana, during a period of high but sub‐bankfull flow as well as at lower flows. Six different types of surface water connectivity with the main, active channel were identified: (i) flow through—a portion of the river flow regularly passes through the feature and returns to the main channel; (ii) flood channel—there is no hydraulic connection at normal flows, but at high flows the channels convey discharge, at least part of which returns to the main channel; (iii) fill and spill—the features fill to a threshold level at high flows and then overflow (mainly via ephemeral channels) into flood basins; (iv) fill and drain—the features fill at high river discharges but do not (except in large floods) overflow because as river discharge declines, water drains back to the river; (v) tributary occupied—tributaries draining to the abandoned channel continue to occupy it, flowing through it to the active channel; and (vi) disconnected—no flow is exchanged except during large floods. The age or stage of infilling and the relative elevation of abandoned channels are important first‐order controls of hydrological connectivity, but the lateral distance from the active channel is poorly related. Other critical controls are whether the cutoff section receives tributary input and whether a tie channel forms. The alluvial valley geomorphic context—specifically the presence of a meander belt ridge and flood basins—is also critical. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
3.
Connection between rivers and their floodplain is critical to the function of fluvial systems; however, there has been little research quantitatively examining the dynamics of this interaction for large, alluvial rivers. Critical questions include the following: What are the rates and mechanisms of materials and energy exchange, and in what ways does the exchange impact ecosystem functioning? To address these questions, we built a simple model of a hypothetical reach of the Lower Mississippi River (LMR) containing a single backwater. The model is based on empirical data obtained from the LMR system. Our primary objectives for the model were to assess potential backwater impacts on river nitrate transport and in subsidizing phytoplankton biomass to the main channel. Simulations run over a 10‐year period suggest that on an annual basis, (a) LMR backwaters remove NO3–N, and it would require a temporal mean of 34,400 ha functioning like the model backwater, or 2.8 times the current area of oxbow lakes, to eliminate 100% of the river flux of NO3–N of our study region; (b) it would require inputs of phytoplankton from a mean of 5,242 ha of sites functioning like the model backwater to produce observed river flux of phytoplankton biomass; and (c) backwater function is sensitive to the controlling elevation in linking channels hence subject to management. Although simple, this model is a useful first step in quantifying the significance of river–backwater connectivity on ecological processes of the LMR system. 相似文献
4.
H. M. Clilverd J. R. Thompson C. M. Heppell C. D. Sayer J. C. Axmacher 《河流研究与利用》2016,32(9):1927-1948
Channelization and embankment of rivers has led to major ecological degradation of aquatic habitats worldwide. River restoration can be used to restore favourable hydrological conditions for target species or processes. However, the effects of river restoration on hydraulic and hydrological processes are complex and are often difficult to determine because of the long‐term monitoring required before and after restoration works. Our study is based on rarely available, detailed pre‐restoration and post‐restoration hydrological data collected from a wet grassland meadow in Norfolk, UK, and provides important insights into the hydrological effects of river restoration. Groundwater hydrology and climate were monitored from 2007 to 2010. Based on our data, we developed coupled hydrological/hydraulic models of pre‐embankment and post‐embankment conditions using the MIKE‐SHE/MIKE 11 system. Simulated groundwater levels compared well with observed groundwater. Removal of the river embankments resulted in widespread floodplain inundation at high river flows (>1.7 m3 s?1) and frequent localized flooding at the river edge during smaller events (>0.6 m3 s?1). Subsequently, groundwater levels were higher and subsurface storage was greater. The restoration had a moderate effect on flood peak attenuation and improved free drainage to the river. Our results suggest that embankment removal can increase river–floodplain hydrological connectivity to form a more natural wetland ecotone, driven by frequent localized flood disturbance. This has important implications for the planning and management of river restoration projects that aim to enhance floodwater storage, floodplain species composition and biogeochemical cycling of nutrients. © 2016 The Authors. River Research and Applications Published by John Wiley & Sons Ltd. 相似文献
5.
A full computer based investigation of the factors influencing the modelling of overbank flood discharges has been carried out. Several floods of differing magnitudes and peak curvatures were routed down regular channels using an implicit finite difference scheme and the influence of time and distance steps used for the numerical solution of the flow equations were investigated. Spillage over sharp crested weirs was assumed to satisfactorily simulate the overbank flood discharge; the importance of a correct estimation of the coefficient of discharge was also checked. It was shown that sensibly chosen values of the time step had little effect on the simulations. This was also true for the value of the coefficient of discharge when the sideweir flow was predominately drowned, but not for free flow conditions. It was also shown that close spacing of computational nodes was required at the onset of overbank flow to accurately simulate the overflow and also model the occurrence of large water level gradients. 相似文献
6.
In many lowland floodplains around the world, upriver interferences to flows (weirs, dams, off‐takes) have led to much reduced frequency and duration of flooding. As a result, many floodplain wetlands are now inundated relatively rarely if at all. Given regulation of most lowland rivers in southeastern Australia, we assessed use of wetlands by birds in the essentially unregulated Ovens River in northeastern Victoria. Twelve sites (0.4–1.2 ha) were studied after flooding. Four sites were ‘permanent billabongs’, four were temporary wetlands and the other four were randomly selected woodland sites >60 m from the nearest water body (including the river) acting as ‘control’ or ‘reference’ sites. Aquatic birds were not recorded using woodland sites, but many species were differentially associated with either billabongs or temporary wetlands. A surprising number of non‐aquatic birds either exclusively or differentially were associated with wetland sites compared with woodland sites. We concluded that heterogeneous macrohabitat will increase local avian biodiversity on lowland floodplains. Moreover, densities and diversity of non‐aquatic, woodland species also increased with the presence of wetlands. Temporary wetlands were used differently from permanent billabongs by birds, especially in foraging methods. This suggests that the reinstatement of major flooding on heavily regulated floodplains would be ecologically advantageous for birds by providing foraging and breeding opportunities. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
7.
The St. John's Bayou water control structure near New Madrid, MO, connects the main Mississippi River to two large backwater areas called the New Madrid Floodway and St. John's Bayou. While this area has been altered, the New Madrid Floodway and St. John's Bayou account for the only substantial portion of the historic Mississippi River floodplain that remains and provides the only critical connection between backwater/floodplain habitat and the river. Fish passage was evaluated during April–December 2010 using ultrasonic telemetry. Stationary receivers were placed strategically at five locations above and below the structure in St. John's Bayou, in the floodway and the outlet to the Mississippi River. A total of 100 individuals representing 14 species were tagged. Total number of detections during an 8‐month period was 1 264 717. Fifteen individuals representing five species moved into the Mississippi and Ohio rivers; seven individuals returned to St. John's Bayou. Thirteen of the 14 species moved upstream through the structure. Of the 85 individuals that stayed in the bayou, 29 fish passed through the structure for a total of 92 passage events. The downstream : upstream passage was roughly 50:50. Passage was correlated with river rise, with frequency of passage being higher in spring, but passage occurred each month during the study. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
8.
黄河下游造床流量的变化及其对河槽的影响 总被引:4,自引:2,他引:2
本文通过计算黄河下游的第一造床流量和第二造床流量,分析了黄河下游河槽的萎缩过程。第一造床流量与年水沙量的关系分析表明,黄河下游的深槽平浅滩流量700~1000m3/s是相对稳定的,恒定流的平衡输沙能力约为18~21kg/m3。通过小浪底水库拦粗排细年平均拦沙约3亿t,并在汛期强化调水调沙运用,基本可以控制黄河下游河槽的淤积萎缩。第二造床流量和平滩流量的关系分析表明黄河下游恢复和维持平滩流量约4000m3/s的中水河槽是比较合理的。根据小浪底水库调水调沙运用状况,提出了恢复和维持黄河下游稳定中水河槽的措施,并探讨了强化小浪底水库调水调沙运用的方案。 相似文献
9.
Reduced river–floodplain connectivity can decrease fisheries production and cause ecological and socioeconomic consequences. In 2011, the largest flood on record in the Missouri River since 1898 nearly eliminated connectivity between an embayment (Hipple Lake) and Lake Sharpe, impeding movement of walleye (Sander vitreus) and a forage fish, gizzard shad (Dorosoma cepedianum). Thus, we used otolith chemistry to quantify Hipple Lake's natal contribution to Lake Sharpe's gizzard shad population and forecast effects of connectivity loss on the reservoir's socioeconomically important walleye fishery. Fish were classified to natal habitats with 79–89% accuracy, with most gizzard shad (64%) hatching in floodplain habitats (i.e., embayments, tributaries, canals, and stilling basins). Hipple Lake contributed 12% of gizzard shad to Lake Sharpe, more than a tributary (4%) and embayment (0%) but less than a canal (27%) and stilling basin (21%). Hipple Lake (178 acres) covers 0.31% of Lake Sharpe (56,884 acres), so its natal contribution is 38 times what would be expected if contribution was linearly related to area. Sediment and water management to maintain connectivity between Lake Sharpe and Hipple Lake and other floodplain habitats is important for continued gizzard shad production and prey supply for the walleye fishery. Otolith chemistry facilitates assessment of gizzard shad natal contributions in different habitats, serving as a fisheries management tool to inform floodplain habitat protection and rehabilitation after floods. 相似文献
10.
黄河下游河道平滩流量与造床流量的变化过程研究 总被引:11,自引:0,他引:11
采用黄河下游各水文站1950-2003年实测资料,系统分析了过去50多年间黄河下游平滩流量和造床流量的变化过程及其与花园口来水量的响应关系,分析表明在过去50多年间黄河下游平滩流量和造床流量总体上呈逐渐减小的趋势,其数值随花园口来水量的丰枯而变化,花园口来水量大,造床流量就大,造床能力就强,塑造的主河槽的平滩流量也大。文中给出了平滩流量与造床流量的响应关系,通过造床流量和平滩流量的比较,指出黄河下游造床流量小于平滩流量,过去50多年间水流塑造河床的能力小于主河槽当时的过流能力,黄河下游主河槽萎缩是河道演变响应来水变化的必然结果。研究结果进一步表明,通过小浪底水库调整进入下游的来水过程,增大河道的造床流量,进而增大河道的过洪能力是治理河道萎缩的重要措施之一。 相似文献
11.
黄河下游河段平滩流量计算及变化过程分析 总被引:3,自引:0,他引:3
黄河下游不仅断面形态复杂,而且主槽形态特征及过流能力沿程变化较大。因此采用河段平均的特征变量来描述主槽形态及过流能力更具有代表性。本文提出了基于对数转换的几何平均与断面间距加权平均相结合的方法表示河段平均的主槽特征变量,计算的河段平滩宽度、水深、面积及流量恒满足水流连续条件。采用该方法计算了1960-2006年中典型年份花园口至高村游荡河段的平滩流量。结果表明河段平滩流量能从总体上综合反映游荡段主槽的过流能力,且其变化幅度远小于断面平滩流量。分析了河段平滩流量与所在河段冲淤量的关系,并建立了河段平滩流量与进口断面两年平均的汛期流量及来沙系数的相关关系。计算了近期黄河下游各河段平滩流量的变化过程,所得结果较好地描述了平滩流量在高村至艾山河段较小,在其上游游荡段及下游弯曲段相对较大的驼峰现象。 相似文献
12.
冲积河流平滩流量的滞后响应模型 总被引:10,自引:1,他引:9
基于冲积河流自动调整的基本原理,根据河床在受到外界扰动后调整速率与其当前状态与平衡状态之间的差值成正比的基本规律,提出了冲积河流平滩流量的滞后响应模型,阐明了前期水沙条件对平滩流量滞后影响的物理本质.采用黄河下游5个主要测站1960~2003年实测平滩流量资料对滞后响应模型进行了检验,结果表明所建模型能够反映平滩流量的滞后响应过程,而且在水沙条件发生变化时,该河段通过冲淤调整达到新的平衡状态的时间约为5年. 相似文献
13.
Frogs are widespread through inland rivers and floodplains and are an important component of floodplain food chains. Despite this, studies of frog communities in inland river systems are limited and the impacts of river regulation on frog communities have received very little attention. Surveys for frogs, tadpoles and egg masses along with assessment of vegetation, hydrology and water chemistry were conducted along 10 km reaches of three creek systems in the Lachlan River catchment, a major regulated river in Australia's Murray–Darling Basin. A total of 23 sample sites were surveyed at locations above and below in‐stream weirs as well as adjacent floodplain depressions. The hydrological regimes of sample sites were classified according to the length of time that they were known to hold water (water permanence). The sample sites fell into two distinct categories, 14 were classified as permanent and occurred upstream of weirs while nine were classified as temporary and were located downstream of weirs and in depressions adjacent to the weir pool. Permanent sample sites had a significantly higher percentage of dead standing timber and were deeper with less aquatic vegetation cover than temporary sample sites. Seven frog species were identified; there were no significant differences in species richness between permanent and the temporary waterbodies but the composition of frog assemblages differed significantly between them. This suggests that alteration to the hydrology of inland creek systems can lead to changes in the distribution frog species, with some becoming more common due to increases in the availably of permanent waterbodies while others decline due to reductions in the availability of seasonally flooded waterbodies. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
14.
Longitudinal connectivity is one of the prime issues addressed in river restoration our days. At the same time, mitigation of climate change impacts by modes of renewable energy increasingly puts pressure on the remaining free flowing river stretches for hydroelectricity production. At the site level, this trade‐off manifests in the negotiation of water for upstream and downstream fish passage versus losses for hydroelectricity production. This study has compiled and analysed 193 studies evaluating fish passes designed to provide upstream migration for all species and size classes of the respective river system. The overall assessment of functioning and discharge dedicated to fish pass maintenance, site, and river characters were provided by the studies. The main objective here was deriving general guidance for the minimum amount of water needed for fully functioning upstream fish passage in relation to river size. There was a significant correlation between functionality and design discharge of a fish pass. Fully functioning fish passes (N = 92) had median design discharge of 5% of the mean average discharge of the river, restrictedly functioning of 1.1% and not functioning of 0.22%. A power model could be derived of design discharge needs in relation to river discharge, which is inversely related to river size. In large rivers, a rather small share of mean discharge is sufficient, whereas in small rivers, it cannot be further downscaled due to dimensions. This model might provide first guidance in adjusting needs for both hydroelectricity generation and fish conservation in regulated rivers. 相似文献
15.
黄河下游高村站平滩面积的滞后响应模型 总被引:1,自引:0,他引:1
本文基于平滩面积的调整速率与当前的平滩面积和平衡值之间的差值成正比的概念,建立了黄河下游高村站平滩面积的滞后响应模型,考虑了水沙条件变化对平滩面积的累积影响,分析了平滩面积对水沙条件的滞后响应规律。结果表明,当年平滩面积的调整是前期连续几年水沙条件累积作用的结果,且包括当年在内的近期4-5年内水沙条件的累积作用较为明显,越往前的水沙条件对当年平滩面积的累积作用越小。 相似文献
16.
The hydrologic regime of the Illinois River has been altered over the past 100 years. Locks and dams regulate water surface elevations and flow, enabling commercial navigation to continue year round. This study relates changes in water surface elevation to fish abundance in the river, and establishes target criteria for operating locks and dams. Using long‐term records of daily river stage, we identified ecologically meaningful hydrological parameters for eight gage locations along the Illinois River. Inter‐annual variability of a long‐term fisheries dataset beginning in 1957 was related to variability in stage, flood and recession duration, frequency, timing, and rate of change of water levels. Reversals in water surface elevation, maximum stage levels, and length of the spring flood were the most important parameters influencing abundance of age‐zero fishes in annual collections. Smallmouth buffalo (Ictiobus bubalus), black crappie (Pomoxis nigromaculatus), freshwater drum (Aplodinotus grunneins), and white bass (Morone chrysops) were most abundant in samples during years that approximated the natural water level regime. Of the 33 hydrologic parameters evaluated for the entire water year from an Illinois River gage site on La Grange Reach, all except average stage in January and Julian date (JD) of maximum stage had moderate or high hydrologic alteration based on the historical range of variation (RVA). The highest degree of hydrologic alteration was for minimum stage levels (1‐day, 3‐day, and 7‐day), rate‐of‐rise, and rate‐of‐fall. Other parameters that have been severely altered were 30‐day minimum stage, 90‐day maximum stage, and the annual number of water level reversals. Operations of the La Grange and Peoria locks and dams could be modified so water level variability would approximate that of the late 1800s, when fish and wildlife resources were abundant. The water regime could be regulated to maintain navigation and improve conditions for native plants and animals without increasing flood damages. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
17.
18.
贺莉 《南水北调与水利科技(中英文)》2018,16(3):38-44
在分析年平滩流量与来水来沙关系的研究中多关注当年或多年水量、沙量、水沙系数等总量特征参数,部分研究中增加考虑了洪峰峰值等特征参数,而针对流量过程对年平滩流量影响的研究较少。通过花园口断面1954-2000年实测流量过程及大量实测断面资料,采用流量历时曲线法来描述流量过程,采用改进的WOL方法估算实时平滩水位,进而估算年/实时平滩流量,分析流量历时曲线特征参数与年/实时平滩特征之间的关系。分析认为,在流量峰型扁平时,断面的年/实时平滩水深基本不变,断面形态变化不大;当流量峰型尖瘦时,断面的年/实时平滩水深变化较大,断面形态变化较大。分析认为,影响年平滩流量的水沙特征参数除水量、沙量、水沙系数等表征总量特性的参数外,还应该适当考虑流量过程的影响,即流量过程峰型相对尖瘦时年/实时平滩流量均变化较大。 相似文献
19.
Floodplain systems are most often hydrologically complex settings characterized by highly variable surface water–groundwater interactions that are subjected to wide‐ranging wetting and drying over seasonal timeframes. This study used field methods, statistical analysis, and the Darcy's law approach to explore surface water–groundwater dynamics, interactions, and fluxes in a geographically complex river‐floodplain wetland‐isolated lake system (Poyang Lake, China). The floodplain system of Poyang Lake is affected by strongly seasonal shifts between dry and wet processes that cause marked changes in surface water and groundwater flow regimes. Results indicate that wetland groundwater is more sensitive to variations in river levels than the seasonal isolated lakes. In general, groundwater levels are lower than those of the isolated lakes but slightly higher than river levels. Statistical analysis indicates that the river hydrology plays a more significant role than the isolated lakes in controlling floodplain groundwater dynamics. Overall, the river shows gaining conditions and occasionally losing conditions with highly variable Darcy fluxes of up to +0.4 and ?0.2 m/day, respectively, whereas the isolated lakes are more likely to show slightly losing conditions (less than ?0.1 m/day). Although seasonal flux rates range from 7.5 to 48.2 m/day for surface water–groundwater interactions in the floodplain, the flux rates for river–groundwater interactions were around four to seven times higher than that of the isolated lake–groundwater interactions. The outcomes of this study have important implications for improving the understanding of the water resources, water quality, and ecosystem functioning for both the river and the lake. 相似文献
20.
基于1955年、1978年、1990年、2008年、2016年5个时期的河网单位面积槽蓄容量和单位面积可调蓄容量、河网槽蓄容量和可调蓄容量4个指标参数,对比分析了三口地区水系调蓄能力时空变化,运用相关分析法剖析了水系结构与调蓄能力的关系。结果表明:①河网槽蓄容量由1955年的9 548.52万m~3减至2016年的7 049.01万m~3,减少了26.17%;河网可调蓄容量由1955年的4 696.39万m~3逐渐减至2016年的2 461.13万m~3,共减少47.59%。②河网单位面积槽蓄容量和河网单位面积可调蓄容量具有明显的等级差异,单位面积可调蓄容量以低等级河流(1、2、3级)减少幅度最大,而4级和5级河流的调蓄能力各指标参数减少值相对较低。③在5个时期中各水系区河网槽蓄能力和可调蓄能力均呈不断下降的态势,其中以藕池河水系区衰退程度最大,河网单位面积槽蓄能力和单位面积可调蓄能力最弱的是虎渡河水系区。④水系调蓄能力与河网结构特征、河流水文连通、水系连通度、水系连通性均在0.01水平上,呈显著正相关。 相似文献