首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Copolymers of aniline and toluidine were synthesized by oxidative chemical polymerization using different ratios of the monomers in the feed, and characterized by a number of techniques including UV–visible, IR, Raman, 1H NMR and EPR spectroscopies, as well as by thermogravimetric analysis and conductivity measurements. The properties of the copolymers are influenced by the amount of toluidine in the copolymer. Poly(o‐toluidine) and poly(m‐toluidine) are noticeably different in their solubility and conductivity. The copolymers show better solubilities than polyaniline but have lower conductivities. Differences in the properties of the salt and base forms of the copolymers are pointed out. Copyright © 2003 Society of Chemical Industry  相似文献   

2.
Copolymers of 2,4‐dichlorophenyl methacrylate and hydrophilic monomer (N‐vinylpyrrolidone) were synthesized with different feed ratios using dimethylformamide as solvent and 2,2′‐azobisisobutyronitrile as initiator at 70 °C. The copolymers were characterized by IR spectrometry. Copolymer compositions were determined by UV spectrometry. The monomer reactivity ratios were determined by applying the conventional linearization method of Fineman‐Ross. Gel permeation chromatography was employed for determining molecular weights and polydispersity indexes. Thermogravimetric analyses of polymers were carried out in nitrogen atmosphere. Homo‐ and copolymers were tested for their antimicrobial properties against selected microorganisms. © 2003 Society of Chemical Industry  相似文献   

3.
Hydrogels formed by alkylated chitosan with N‐(3‐chloro‐2‐hydroxypropyl) trimethylammonium chloride and synthetic copolymers forming polyelectrolyte complexes are presented. The copolymer polyelectrolytes were synthesized through free‐radical polymerization. Their compositions and reactivity parameters were determined by the Finemann–Ross and Kelen–Tüdos methods. The copolymers have structures that tend to be alternating. The hydrogels were characterized by thermogravimetric analysis, Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, scanning electron microscopy, and water solubility tests at different pH values. For the formation of the hydrogels, they were prepared using different molar ratios of alkylated chitosan and polyelectrolyte copolymers. Their stability was determined by rheological analysis, evaluating the response as a function of strain and frequency. The rheological tests showed that the stability of the polyelectrolyte complexes followed the trend ChT‐CP2 > ChT‐CP3 > ChT‐CP1 due to the presence of greater electrostatic interactions. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46556.  相似文献   

4.
Poly(m‐aminophenyl acetic acid) was synthesized under different conditions from the respective monomer, using ammonium persulfate as oxidizing agent in both the presence and the absence of CuCl2 in HCl(aq). Moreover, the copolymers between aniline and m‐aminophenyl acetic acid were prepared at several feed mol ratios (f1) of aniline. Copper was introduced by the Batch method in the homo‐ and copolymers of different compositions. The polymers were characterized by FTIR and UV‐vis spectroscopy, elemental analysis, thermal analysis, and electrical conductivity. The thermal stability and the content of copper increased as the content of aniline was increased in the copolymers. Moreover, the copolymers showed a high thermal stability; at 400°C a weight loss < 10% was observed. The electrical conductivity was increased with a higher content of aniline in the copolymers, achieving semiconduction values. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1484–1492, 2003  相似文献   

5.
Copolymers of poly(acrylonitrile‐co‐ethyl methacrylate), P(AN‐EMA), with three different EMA content and parent homopolymers were synthesized by emulsion polymerization. The chemical composition of copolymers were identified by FTIR, 1H‐NMR and 13C‐NMR spectroscopy. The thermal properties of copolymers were modified by changing the EMA content in copolymer compositions. Various amounts of LiClO4 salt loaded (PAN‐co‐PEMA) copolymer films were prepared by solution casting. The dielectric properties of these films at different temperatures and frequencies were investigated. It was found that the dielectric constant and ac‐conductivity of copolymer films were strongly influenced by the salt amounts and EMA content in copolymers. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
Copolymers (P(PDA/Ar)) of o‐phenylenediamine with aniline (Ar = ANi), 3,4‐ethylenedioxythiophene (Ar = EDOT) and 2,3,5,6‐tetrafluoroaniline (Ar = TFANi) were synthesized via polycondensation initiated by ammonium persulfate. The NH2 group content in the copolymers was determined by analyzing the 1H NMR spectra of the N‐acetylated copolymers. Copolymers crosslinked by viologen (1,1'‐disubstituted 4,4'‐bipyridinium dichloride) were obtained by reaction involving the reactive NH2 groups in the copolymers. The absorption wavelengths of solutions of the copolymers and the electrochemical oxidation and reduction potentials of cast films of the copolymers were affected by the electrical properties of the Ar unit. © 2016 Society of Chemical Industry  相似文献   

7.
Copolymers of 1‐vinyl‐1,2,4‐triazole (VTAz) and acrylic acid (AA) having different mole ratios were synthesized using free radical‐initiated solution polymerization in dimethylformamide at 70 °C with α,α′‐azobisisobutyronitrile as initiator in nitrogen atmosphere. The compositions of the synthesized copolymers for a wide range of monomer feeds were determined using Fourier transform infrared (FTIR) spectroscopy through recorded absorption bands for VTAz (1510 cm?1, C?N (triazole ring) stretching mode) and AA (1710 cm?1, C?O stretching mode) units. The structures of the copolymers were characterized using FTIR and 1H NMR spectroscopy. The copolymer compositions were also determined from 1H NMR analysis following proton signals of carboxyl group at 11.8–12.5 ppm of AA and of triazole ring at 7.5–8.1 ppm of VTAz. Monomer reactivity ratios for the VTAz‐AA pair were estimated using linear methods, i.e. Fineman–Ross (FR) and Kelen–Tüdös (KT). From FTIR evaluation, monomer reactivity ratios were calculated as r1 = 0.404 and r2 = 1.496 using the FR method and r1 = 0.418 and r2 = 1.559 using the KT method. These values were found to be very close to those obtained from NMR evaluation. The two cases r1r2 < 1 and r1 < r2 indicated the random distribution of the monomers in the final copolymers and the presence of a greater amount of AA units in the copolymer than in the feed, respectively. The observed relatively high activity of complexed growing radical‐AA? … VTAz was explained by the effect of complex formation between carbonyl groups and triazole fragments in chain growth reactions. Thermal behaviours of copolymers with various compositions were investigated using thermogravimetric and differential scanning calorimetric analyses. It was observed that thermal stabilities and glass transition temperatures of the copolymers increased resulting from complex formation between acid and triazole units. © 2012 Society of Chemical Industry  相似文献   

8.
Poly[aniline‐coN‐(2‐hydroxyethyl) aniline] was synthesized in an aqueous hydrochloric acid medium with a determined feed ratio by chemical oxidative polymerization. This polymer was used as a functional conducting polymer intermediate because of its side‐group reactivity. To synthesize the alkyl‐substituted copolymer, the initial copolymer was reacted with NaH to obtain the N‐ and O‐anionic copolymer after the reaction with octadecyl bromide to prepare the octadecyl‐substituted polymer. The microstructure of the obtained polymers was characterized by Fourier transform infrared spectroscopy, 1H‐NMR, and X‐ray diffraction. The thermal behavior of the polymers was investigated by thermogravimetric analysis and differential scanning calorimetry. The morphology of obtained copolymers was studied by scanning electron microscopy. The cyclic voltammetry investigation showed the electroactivity of poly [aniline‐coN‐(2‐hydroxyethyl) aniline] and N and O‐alkylated poly[aniline‐coN‐(2‐hydroxyethyl) aniline]. The conductivities of the polymers were 5 × 10?5 S/cm for poly[aniline‐coN‐(2‐hydroxyethyl) aniline] and 5 ×10?7 S/cm for the octadecyl‐substituted copolymer. The conductivity measurements were performed with a four‐point probe method. The solubility of the initial copolymer in common organic solvents such as N‐methyl‐2‐pyrrolidone and dimethylformamide was greater than polyaniline. The alkylated copolymer was mainly soluble in nonpolar solvents such as n‐hexane and cyclohexane. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
A comparative study on photoinitiated solution copolymerization of n‐butylacrylate (BA) with styrene (Sty) using pyrene (Py), 1‐acetylpyrene (AP), and 1‐(bromoacetyl)pyrene (BP) as initiators showed that the introduction of a chromophoric moiety, bromoacetyl (? COCH2Br), significantly increased the photoinitiating ability of pyrene. The kinetics and mechanism of copolymerization of BA with Sty using BP as photoinitiator have been studied in detail. The system follows nonideal kinetics (Rp ∝ [BP]0.34 [BA]1.07 [Sty]0.97). The nonideality was attributed to both primary radical termination and degradative initiator transfer. The monomer reactivity ratios of Sty and BA have been estimated by the Finemann–Ross and Kelen–Tudos methods, by analyzing copolymer compositions determined by 1H NMR spectra. The values of r1 (Sty) and r2 (BA) were found to be 0.78 and 0.25, respectively, which suggested the high concentration of alternating sequences in the random copolymers obtained. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3233–3239, 2006  相似文献   

10.
High‐conversion (HC) copolymers of aniline and o‐methoxyaniline (o‐anizidine) were synthesized for the first time by chemical oxidative copolymerization using various polymerization techniques (simultaneous or consecutive introduction of comonomers into the polymerizing system). Low‐conversion (LC) copolymers have also been synthesized for comparison. The polymers obtained were characterized using 1H‐NMR, infrared, and electronic absorption spectroscopy, differential scanning calorimetry, and electrical conductivity measurements. Solubility characteristics and composition of different fractions of the copolymers were also determined. It was shown that in contrast to the LC copolymers, HC copolymers reveal relatively poor solubility. Electrical conductivity of copolymers and also of o‐methoxyaniline homopolymer is lower compared to polyaniline, which correlates with notable hypsochromic (blue) shift of the bands in electronic absorption spectra. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 75–81, 2006  相似文献   

11.
Chemical heterogeneity can influence the properties of statistical copolymers. It is shown that any integral property of a copolymer will depend on the chemical heterogeneity if such a property is a non‐linear function of copolymer composition. This is illustrated by means of the conductivity of copolymers of aniline and 2‐bromoaniline. The monomer reactivity ratios of this monomer pair are rA (aniline) = 0.94 and rB (2‐bromoaniline) = 0.31. The dependence of conductivity on the copolymer composition is non‐linear. Consequently, the conductivity depends on the compositional distribution, ie on the extent of chemical heterogeneity. Heterogeneous high‐conversion copolymers have lower conductivity than corresponding relatively homogeneous low‐conversion copolymers. The change in the average copolymer composition with increasing conversion is demonstrated for a copolymerization mixture containing 30 mol% aniline. The conductivity decreases at the same time as the chemical heterogeneity of the copolymer develops. The change in the average copolymer composition alone cannot explain the observed conductivity decrease. The conductivity is dependent not only on average composition but also on the chemical composition distribution. Copyright © 2004 Society of Chemical Industry  相似文献   

12.
Polyaniline, poly(aniline‐co‐4,4′‐diaminodiphenylsulfone), and poly(4,4′‐diaminodiphenylsulfone) were synthesized by ammonium peroxydisulfate oxidation and characterized by a number of techniques, including infrared spectroscopy, ultraviolet–visible absorption spectroscopy, 1H‐NMR, thermogravimetric analysis, and differential scanning calorimetry. These copolymers had enhanced solubility in common organic solvents in comparison with polyaniline. The conductivities of the HCl‐doped polymers ranged from 1 S cm?1 for polyaniline to 10?8 S cm?1 for poly(4,4′‐diaminodiphenylsulfone). The copolymer compositions showed that block copolymers of 4,4′‐diaminodiphenylsulfone (r1 > 1) and aniline (r2 < 1) formed and that the reactivity of 4,4′‐diaminodiphenylsulfone was greater than that of aniline. The results were explained by the effect of the ? SO2? group present in the polymer structure. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2337–2347, 2003  相似文献   

13.
Copolymers of aniline and ortho/meta-amino benzoic acid were synthesized by chemical polymerization using an inverse emulsion pathway. The copolymers are soluble in organic solvents, and the solubility increases with the amino benzoic acid content in the feed. The reaction conditions were optimized with emphasis on high yield and relatively good conductivity (2.5×10−1 S cm−1). The copolymers were characterized by a number of techniques including UV-vis, FT-IR, FT-Raman, EPR and NMR spectroscopy, thermal analysis, SEM and conductivity. The influence of the carboxylic acid group ring substituent on the copolymers is investigated. The spectral studies reveal that the amino benzoic acid groups restrict the conjugation along the polymer chain. The SEM micrographs of the copolymers reveal regions of amorphous and crystalline domain. Thermal studies indicate a marginally higher thermal stability for poly(aniline-co-m-amino benzoic acid) compared to poly(aniline-co-o-amino benzoic acid).  相似文献   

14.
Copolymers containing acrylamide (A) and acrylonitrile (B) units of different compositions were synthesized by free‐radical solution polymerization. The reactivity ratios were estimated by the Kelen Tudos and nonlinear error‐in‐variable methods. The triad sequence distribution in terms of A‐ and B‐centered triads were obtained from 13C{1H}‐NMR spectroscopy. The complete spectral assignments in terms of compositional and configurational sequences of the overlapping carbon and proton spectra of these copolymers were done using distortionless enhancement by polarization transfer (DEPT), two‐dimensional proton‐detected heteronuclear correlation (inverse‐HETCOR), and total correlated spectroscopy (TOCSY) experiments. The Monte Carlo simulation was used to study the effect of the fractional conversion on the triad fractions. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 55–67, 1999  相似文献   

15.
Copolymers of N‐vinylcarbazole and methyl methacrylate of different compositions were prepared by solution polymerization with azobisisobutyronitrile as an initiator, and their compositions were determined from quantitative 13C{1H}‐NMR spectroscopy. The reactivity ratios for the comonomers were calculated with the Kelen–Tudos and nonlinear error‐in‐variable methods. The complete spectral assignment of the overlapping 1H and 13C{1H} spectra of the copolymers was made with the help of distortionless enhancement by polarization transfer, two‐dimensional heteronuclear single‐quantum correlation, and total correlation spectroscopy. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 3005–3012, 2003  相似文献   

16.
4‐Acetamidophenyl acrylate (APA) was synthesized and characterized by IR, 1H and 13C NMR spectroscopies. Homo‐ and copolymers of APA with acrylonitrile (AN) and N‐vinyl‐2‐pyrrolidone (NVP) were prepared by a free radical polymerization. All the copolymer compositions have been determined by 1H NMR technique, and the reactivity ratios of the monomer pairs have been evaluated using the linearization methods Fineman–Ross, Kelen–Tudos, and extended Kelen–Tudos. Nonlinear error‐in‐variable model (EVM) method was used to compare the reactivity ratios. The reactivity ratios for copoly(APA–AN) system were APA(r1) = 0.70 and AN(r2) = 0.333, and for copoly(APA–NVP) system the values were APA(r1) = 4.99 and NVP(r2) = 0.019. Thermal stability and molecular weights of the copolymers are reported. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1919–1927, 2006  相似文献   

17.
Copolymers of sodium o‐methacryloylaminophenylarsonate (o‐MAPHA‐Na) 1 and p‐methacrylolylaminophenylarsonate (p‐MAPHA‐Na) 2 with sodium acrylate (AA‐Na) 3 , sodium methacrylate (AM‐Na) 4 and acrylamide (AAD) 5 were prepared by free radical polymerization in aqueous media at 70°C using potassium persulfate (K2S2O8) as the initiator. The total monomer concentration was carried out at 0.5M and the feed ratio ( M1 : M2 ) was varied from 10 : 90 to 90 : 10 mol%. The kinetic study was carried out by dilatometric method. The copolymer compositions were calculated by arsenic content in the copolymers. The As content (ppm) was determined by atomic absorption spectrometry (AAS). The reactivity ratios (r1, r2) were estimated by the Kelen‐Tüdös linearization method as well as error‐in‐variables method using the computer program RREVM®. In all cases, r1 < 1 and r2 > 1, indicating a tendency to form random copolymers. The values suggest that the copolymers contain a larger proportion of comonomer (i.e., AA‐Na, AM‐Na, or AAD). Weight‐average molar masses (M w) of copolymers were determined by multi‐angle light scattering. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
Copolymerization of styrene (St) and methyl methacrylate (MMA) was carried out using 1,1,2,2‐tetraphenyl‐1,2‐bis (trimethylsilyloxy) ethane (TPSE) as initiator; the copolymerization proceeded via a “living” radical mechanism and the polymer molecular weight (Mw) increased with the conversion and polymerization time. The reactivity ratios for TPSE and azobisisobutyronitrile (AIBN) systems calculated by Finemann–Ross method were rSt = 0.216 ± 0.003, rMMA= 0.403 ± 0.01 for the former and rSt= 0.52 ± 0.01, rMMA= 0.46 ± 0.01 for the latter, respectively, and the difference between them and the effect of polymerization conditions on copolymerization are discussed. Thermal analysis proved that the copolymers obtained by TPSE system showed higher sequence regularity than that obtained by the AIBN system, and the sequence regularity increased with the content of styrene in copolymer chain segment. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1474–1482, 2001  相似文献   

19.
Homo‐ and copolymers of 4‐fluorostyrene (FSt) and styrene (St) were synthesized with different feed ratios using free radical bulk polymerization with azobisisobutyronitrile (AIBN) as initiator. It yielded series of (co)polymers with various amounts of included FSt, P(St‐co‐FSt) (5–50 mol%) and PFSt. The effect of the initiator concentration on the molecular weights of the homopolymers, that is, PSt and PFSt was investigated. Copolymer compositions were determined by nuclear magnetic resonance spectroscopy. The relative reactivity ratios of both comonomers were determined by applying the conventional linearization methods of Jaacks (J), Finemann–Ross (F–R), inverted Finemann–Ross (IF–R), and Kelen‐Tüdos (K–T). The reactivity ratios values of St and FSt obtained from J plot are 1.06 and 0.84, F–R plot are 1.18 and 1.06, IF–R 1.01 and 0.86, and K–T plot 1.04 and 0.88, respectively. Thermal properties of prepared (co)polymers, that is, glass transition temperature (Tg) and thermal stability, were determined from differential scanning calorimetry and thermogravimetrical measurements. The lack of significant influence of FSt comonomer content on Tg of (co)polymers was observed. Additionally, the thermal degradation kinetics of obtained PSt and PFSt was studied by thermogravimetric analysis. Kinetic parameters such as the thermal decomposition activation energy (E) and frequency factor (A) were estimated by Ozawa model [E(O) and A(O), respectively] and Kissinger model [E(K) and A(K), respectively]. The activation energy and the frequency factor of PFSt (253 kJ/mol) were higher than PSt (236 kJ/mol). The resulting activation energies estimated using the two methods were quite close. POLYM. ENG. SCI., 54:1170–1181, 2014. © 2013 Society of Plastics Engineers  相似文献   

20.
Free‐radical–initiated copolymerization of N‐phenylmaleimide (NPMI) with styrene (St) at 110°C in a toluene solution initiated by AIBN was carried out by a semibatch method. The compositions of the copolymers were determined by using an elemental analyzer. The glass‐transition temperatures of the copolymers were measured by differential scanning calorimetry. All the semibatch copolymers show a single glass‐transition temperature that increases markedly with increasing NPMI content in the copolymers. The thermal stabilities of the copolymers were studied by using a programmed thermogravimetric analysis technique. Copolymers show a considerable increase in thermal stability and different degradation reaction mechanisms with increasing content of NPMI. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 417–422, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号