首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two new alkyne‐terminated xanthate reversible addition‐fragmentation chain‐transfer (RAFT) agents: (S)‐2‐(Propynyl propionate)‐(O‐ethyl xanthate) (X3) and (S)‐2‐(Propynyl isobutyrate)‐(O‐ethyl xanthate) (X4) were synthesized and characterized and used for the controlled radical polymerization of N‐vinylpyrrolidone (NVP). X3 showed better chain transfer ability in the polymerization at 60°C. Molecular weight of the resulted polymer increased linearly with the increase in monomer loading. Kinetics study with X3 showed the pseudo‐first order kinetics up to 67% monomer conversion. Molecular weight (Mn) of the resulting polymer increased linearly with the increase in the monomer conversion up to around 67%. With the increase in the monomer conversion, polydispersity of the corresponding poly(NVP)s initially decreased from 1.34 to 1.32 and then increased gradually to 1.58. Chain‐end analysis of the resulting polymer by 1H‐NMR and FTIR showed clearly that polymerization started with radical forming out of xanthate RAFT agent. Living nature of the polymerization was also confirmed from the successful homo‐chain extension experiment and the hetero‐chain extension experiment involving synthesis of poly(NVP)‐b‐polystyrene amphiphilic diblock copolymer. Formed alkyne‐terminated poly(NVP) also allowed easy conjugation to azide‐terminated polystyrene by click chemistry to prepare well‐defined poly(NVP)‐b‐polystyrene block copolymers. Resulting polymers were characterized by GPC, 1H‐NMR, FTIR, and thermal study. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
A new monomer, 3,6‐endo‐methylene‐1,2,3,6‐tetrahydrophthalimidobutanoyl‐5‐fluorouracil (ETBFU), was synthesized by reaction of 3,6‐endo‐methylene‐1,2,3,6‐tetrahydrophthalimidobutanoyl chloride and 5‐fluorouracil. The homopolymer of ETBFU and its copolymers with acrylic acid (AA) or vinyl acetate (VAc) were prepared by photopolymerization using 2,2‐dimethoxy‐2‐phenylacetophenone as an initiator at 25 °C. The synthesized ETBFU and its polymers were identified by FTIR, 1H NMR and 13C NMR spectroscopies. The ETBFU content in poly(ETBFU‐co‐AA) and poly(ETBFU‐co‐VAc) was 43 and 14 mol%, respectively. The apparent number‐average molecular weight (Mn) of the polymers determined by GPC ranged from 8400 to 11 300. The in vitro cytotoxicity of the samples against mouse mammary carcinoma (FM3A), mouse leukaemia (P388), and human histiocytic lymphoma (U937) cancer cell lines decreased in the order 5‐FU ≥ ETBFU > poly(ETBFU) > poly(ETBFU‐co‐AA) > poly(ETBFU‐co‐VAc). The in vivo antitumour activity of the polymers against Balb/C mice bearing sarcoma 180 tumour cells was greater than that of 5‐fluorouracil at all doses tested. © 2000 Society of Chemical Industry  相似文献   

3.
A novel class of wholly aromatic poly(ester‐imide)s, having a biphenylene pendant group, with inherent viscosities of 0.32–0.49 dL g?1 was prepared by the diphenylchlorophosphate‐activated direct polyesterification of the preformed imide‐ring‐containing diacid, 4‐p‐biphenyl‐2,6‐bis(4‐trimellitimidophenyl)pyridine (1) with various aromatic dihydroxy compounds in the presence of pyridine and lithium chloride. A reference diacid, 2,6‐bis(trimellitimido)pyridine (2) without a biphenylene pendant group and two phenylene rings in the backbone, was also synthesized for comparison purposes. At first, with due attention to structural similarity and to compare the characterization data, a model compound (3) was synthesized by the reaction of compound 1 with two mole equivalents of phenol. Moreover, the optimum condition of polymerization reactions was obtained via a study of the model compound synthesis. All of the resulting polymers were characterized by Fourier transform infrared and 1H NMR spectroscopy and elemental analysis. The ultraviolet λmax values of the poly(ester‐imide)s were also determined. All of the resulting polymers exhibited excellent solubility in common organic solvents, such as pyridine, chloroform, tetrahydrofuran, and m‐cresol, as well as in polar organic solvents, such as N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide, and dimethyl sulfoxide. The crystalline nature of the polymers obtained was evaluated by means of wide‐angle X‐ray diffraction. The resulting poly(ester‐imide)s showed nearly an amorphous nature, except poly(ester‐imide) derived from 4,4′‐dihydroxy biphenyl. The glass transition temperatures (Tg) of the polymers determined by differential scanning calorimetry thermograms were in the range 298–342 °C. The 10% weight loss temperatures (T10%) from thermogravimetric analysis curves were found to be in the range 433–471 °C in nitrogen. Films of the polymers were also prepared by casting the solutions. Copyright © 2006 Society of Chemical Industry  相似文献   

4.
In this article, two novel benzobisthiazole‐containing hyperbranched polyamides with different end groups were synthesized, by adjusting the feed molar ratio of the reaction monomers, using 1,3,5‐benzenetricarboxylic acid and 2,6‐diaminobenzo[1,2‐d:4,5‐d']bisthiazole as monomers, polyphosphoric acid as solvent, and catalyst. The molecular structure of the synthesized hyperbranched polymers were speculated by 1H‐nuclear magnetic resonance (NMR) analysis, 13C‐NMR analysis, and Fourier transform infrared analysis. The Mn, Mw, and DB of the carboxyl terminated polymer HB‐COOH are 3264 g/mol, 3350 g/mol, and 44.1%, respectively, with a polydispersity of 1.03. The Mn, Mw, and DB of amino terminated polymer HB‐NH2 are 3340 g/mol, 3420 g/mol, and 41.7%, respectively, with a polydispersity of 1.02. The thermal stability of HB‐NH2 was higher than HB‐COOH in the range of 30 °C–800 °C.These two benzobisthiazole‐containing hyperbranched polyamides were completely amorphous and soluble in DMSO. Their DMSO solutions exhibited strong blue fluorescence. The fluorescent intensity of HB‐NH2 was higher than HB‐COOH. The prepared polymers were potential useful in the area of blue light emitting and display. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43453.  相似文献   

5.
Well‐defined poly(methyl methacrylate) (Mn = 3630 g mol?1, PDI = 1.06) with a primary benzylic bromide prepared using anionic polymerization was successfully transformed into diverse end‐functionalities (ω‐carboxyl, ω‐hydroxy, ω‐methyl‐vinyl, ω‐trimethylsilane, and ω‐glycidyl‐ether) via “click” reaction. The bromine end‐terminated poly(methyl methacrylate) was first substituted by an azide function and sequentially was reacted with various functional alkynes (propiolic acid, propargyl alcohol, 2‐methyl‐1‐buten‐3‐yne, propargyl trimethylsilane, and propargyl glycidylether). In all the cases, 1H‐NMR, 13C NMR, FT‐IR, and GPC measurements show qualitative and quantitative transformation of the chain‐end poly(methyl methacrylate) into the desired functionalities with high conversion (above 99%). © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
A new monomer, exo‐3,6‐epoxy‐1,2,3,6‐tetrahydrophthalimidocaproic acid (ETCA), was prepared by reaction of maleimidocaproic acid and furan. The homopolymer of ETCA and its copolymers with acrylic acid (AA) or with vinyl acetate (VAc) were obtained by photopolymerizations using 2,2‐dimethoxy‐2‐phenylacetophenone as an initiator at 25 °C. The synthesized ETCA and its polymers were identified by FTIR, 1H NMR and 13C NMR spectroscopies. The apparent average molecular weights and polydispersity indices determined by gel permeation chromatography (GPC) were as follows: Mn = 9600 g mol?1, Mw = 9800 g mol?1, Mw/Mn = 1.1 for poly(ETCA); Mn = 14 300 g mol?1, Mw = 16 200 g mol?1, Mw/Mn = 1.2 for poly(ETCA‐co‐AA); Mn = 17 900 g mol?1, Mw = 18 300 g mol?1, Mw/Mn = 1.1 for poly(ETCA‐co‐VAc). The in vitro cytotoxicity of the synthesized compounds against mouse mammary carcinoma and human histiocytic lymphoma cancer cell lines decreased in the following order: 5‐fluorouracil (5‐FU) ≥ ETCA > polymers. The in vivo antitumour activity of the polymers against Balb/C mice bearing sarcoma 180 tumour cells was greater than that of 5‐FU at all doses tested. © 2001 Society of Chemical Industry  相似文献   

7.
A series of γ‐(2,3‐dihydroxypropoxy)propyl‐terminated poly(dimethylsiloxane) (DHT‐PDMS) samples with different molecular weights were prepared through the acid‐catalyzed equilibrium copolymerization of octamethylcyclotetrasiloxane and 1,3‐bis[γ‐(2,3‐dihydroxypropoxy)propyl]tetramethyldisiloxane. The intrinsic viscosity in toluene ([η]toluene) and the number‐average molecular weight (Mn) were determined with an Ubbelohde viscometer and 1H‐NMR spectra, respectively. In this way, the relationship between [η]toluene and Mn was established. For 2.0 × 104 < Mn < 4.0 × 104, [η]toluene,25°C was 1.874Mn 0.323. The solution behavior of DHT‐PDMS was also investigated. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1759–1762, 2004  相似文献   

8.
Diblock copolymers of poly(L ‐lactide)‐block‐poly(methyl methacrylate) (PLLA‐b‐PMMA) were synthesized through a sequential two‐step strategy, which combines ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP), using a bifunctional initiator, 2,2,2‐trichloroethanol. The trichloro‐terminated poly(L ‐lactide) (PLLA‐Cl) with high molecular weight (Mn,GPC = 1–12 × 104 g/mol) was presynthesized through bulk ROP of L ‐lactide (L ‐LA), initiated by the hydroxyl group of the double‐headed initiator, with tin(II) octoate (Sn(Oct)2) as catalyst. The second segment of the block copolymer was synthesized by the ATRP of methyl methacrylate (MMA), with PLLA‐Cl as macroinitiator and CuCl/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) as catalyst, and dimethyl sulfoxide (DMSO) was chosen as reaction medium due to the poor solubility of the macroinitiator in conventional solvents at the reaction temperature. The trichloroethoxyl terminal group of the macroinitiator was confirmed by Fourier transform infrared spectroscopy (FTIR) and 1H‐NMR spectroscopy. The comprehensive results from GPC, FTIR, 1H‐NMR analysis indicate that diblock copolymers PLLA‐b‐PMMA (Mn,GPC = 5–13 × 104 g/mol) with desired molecular composition were obtained by changing the molar ratio of monomer/initiator. DSC, XRD, and TG analyses establish that the crystallization of copolymers is inhibited with the introduction of PMMA segment, which will be beneficial to ameliorating the brittleness, and furthermore, to improving the thermal performance. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

9.
New diimide–dicarboxylic acids, ie 4‐phenyl‐2,6‐bis(4‐trimellitimidophenyl)pyridine and 4‐p‐biphenyl‐2,6‐bis‐(4‐trimellitimidophenyl)pyridine, were synthesized by the condensation reaction of 4‐phenyl‐2,6‐bis(4‐aminophenyl)pyridine and 4‐p‐biphenyl‐2,6‐bis(4‐aminophenyl)pyridine with trimellitic anhydride in glacial acetic acid or dimethylformamide. The monomers were fully characterized by FT‐IR and NMR spectroscopies, and elemental analyses. A series of novel poly(amide–imide)s with inherent viscosities of 0.68–0.87 dl g?1 was prepared from the two diimide–diacids with various aromatic diamines by direct polycondensation. The poly(amide–imide)s were characterized by FT‐IR and NMR spectroscopies. The λmax data for the resulting poly(amide–imide)s were in the range of 260–292 nm. These polymers exhibited good solubilities in polar aprotic solvents. The 10 % weight loss temperatures are above 485 °C under a nitrogen atmosphere. Copyright © 2004 Society of Chemical Industry  相似文献   

10.
Polymerization of acrylonitrile was carried out using yttrium tris(2,6‐di‐tert‐butyl 4‐methyl‐phenolate) (Y(OAr)3) as single component catalyst for the first time. The effects of concentrations of the monomer and catalyst, kinds of rare earth element and solvent, as well as temperature and polymerization time were investigated. The overall activation energy of polymerization in n‐hexane and THF mixture is 18.3 kJ mol?1. Polyacrylonitriles (PANs) obtained by using Y(OAr)3 in n‐hexane and THF mixture at 50 °C are predominantly atactic, while yellow PANs obtained in DMF under the same conditions have a syndiotactic‐rich configuration (>50%), and their highly branched and/or cyclized structures have also been found. © 2002 Society of Chemical Industry  相似文献   

11.
Poly1‐hexene was prepared using a conventional heterogeneous Ziegler–Natta catalyst and its stereoregularity was characterized using 13C‐NMR analysis. New kind of high impact polystyrene (HIPS) was prepared by radical polymerization of styrene in the presence of different amounts of synthesized poly1‐hexene (PH) as impact modifier (HIPS/PH) and compared with conventional high impact polystyrene with polybutadiene (HIPS/PB) as rubber phase. Scanning electron microscopy (SEM) revealed that the dispersion of poly1‐hexene in polystyrene matrix was more uniform compared with it in HIPS/PB. The impact strength of HIPS/PH was 29–79% and 80–289% higher than that in HIPS/PB and neat polystyrene, respectively. FTIR was used to confirm more durability of HIPS/PH samples toward ozonation. To study the effect of rubber type and amount on the Tgs of polystyrene, differential scanning calorimetry was employed. Results obtained from TGA demonstrated higher thermal stability of HIPS/PH sample in comparison with conventional HIPS/PB one. Our obtained results suggest new high impact polystyrene that in all studied aspects has better performance than the conventional HIPS. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43882.  相似文献   

12.
BACKGROUND: Polymers of phenols and aromatic amines have emerged as new materials in fields such as superconductors, coatings, laminates, photoresists and high‐temperature environments. The stability, kinetics and associated pollution of the thermal decomposition of oligophenols are of interest for the aforementioned fields. RESULTS: A new Schiff base polymer, derived from N,N′‐bis(2‐hydroxy‐3‐methoxyphenylmethylidene)‐2,6‐pyridinediamine, was prepared by oxidative polycondensation. Characterisations using Fourier transform infrared, UV‐visible, 1H NMR and 13C NMR spectroscopy, thermogravimetric/differential thermal analysis, gel permeation chromatography, cyclic voltammetry and conductivity measurements were performed. The number‐average (Mn) and weight‐average molecular weight (Mw) and dispersity (D = Mw/Mn) of the polymer were found to be 61 000 and 94 200 g mol?1 and 1.54, respectively. Apparent activation energies of the thermal decomposition of the polymer were determined using the Tang, Flynn–Wall–Ozawa, Kissinger–Akahira–Sunose and Coats–Redfern methods. The most likely decomposition process was a Dn deceleration type in terms of the Coats–Redfern and master plot results. CONCLUSION: The mechanism of the degradation process can be understood through the use of kinetic parameters obtained from various non‐isothermal methods. Copyright © 2009 Society of Chemical Industry  相似文献   

13.
Background: Poly(olefin sulfone)s have been shown to form helical regions and to display main‐chain liquid‐crystalline behaviour in the bulk when they possess long side‐chains. It is believed that increasing the tacticity of the backbone could enhance their liquid‐crystalline behaviour. This study aims to produce tactic poly(olefin sulfone)s by stereospecific ring‐opening polymerisation. Results: T actic polythiranes were successfully obtained from a racemic mixture of thirane monomers using a series of chiral catalyst systems. The isotactic placement (Pi) was determined using 13C NMR analysis of carbons in or near the backbone. The polysulfides were oxidised by peracetic acid to their corresponding polysulfones. Powder X‐ray diffraction studies showed that the isotactic polysulfones formed more ordered structures than their atactic analogues, an effect attributed to a tightening of the helical pitch. Conclusions: Tactic poly(1‐hexene sulfone)s have been prepared for the first time by stereoselective ring‐opening polymerisation. Copyright © 2007 Society of Chemical Industry  相似文献   

14.
Polyethylene‐b‐poly (ethylene glycol) (PE‐b‐PEG) was successfully synthesized by a coupling reaction of hydroxyl‐terminated polyethylene (PE‐OH) and isocyanate‐terminated poly (ethylene glycol) (PEG‐NCO). PE‐OH was prepared by coordination chain transfer polymerization (CCTP) using 2,6‐bis[1‐(2,6‐diisopropylphenyl)imino ethyl] pyridine iron (II) dichloride /dry ethylaluminoxane (DEAO) /diethyl zinc (ZnEt2) as catalyst and subsequent in situ oxidation with oxygen. The active centers of this catalyst system were counted, indicating that the active centers were more stable using DEAO as cocatalyst than using dry methylaluminoxane (DMAO) as cocatalyst. PEG‐NCO was synthesized through the condensation reaction of monomethylpoly(ethylene glycol) (PEG) with isophoronediisocyanate (IPDI). Subsequently, the thermal characterization, morphological characterization and the application of these diblock copolymers was investigated. The results indicated that the diblock copolymers were effective compatilizers for polyethylene/poly(ethylene glycol) blends. Meanwhile, they were excellent surface modification agents for polyethylene membrane and glass sheet, it can efficiently turn a hydrophobic surface into a hydrophilic surface, or vice versa. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42236.  相似文献   

15.
The controlled/living radical polymerization of N‐phenyl maleimide (NPMI) was achieved using 2,2′‐azobisisobutyronitrile as the initiator and 2‐cyanopropyl‐2‐yl dithiobenzoate as the reversible addition‐fragmentation chain transfer agent at 75°C in dichloroethane/ethylene carbonate (60/40, w/w) mixed solvent. The block copolymers of polystyrene‐b‐polyNPMI and poly(n‐butyl methacrylate)‐b‐polyNPMI were successfully prepared by chain extension from dithiobenzoate‐terminated polystyrene and poly (n‐butyl methacrylate) to NPMI, respectively. The obtained NPMI‐based (co)polymers were characterized by gel permeation chromatography and 1H‐NMR spectroscopy. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
A new polyphenol (poly‐2‐[(4‐methylbenzylidene)amino]phenol) (P(2‐MBAP)) containing an azomethine group was synthesized by oxidative polycondensation reaction of 2‐[(4‐methylbenzylidene)amino]phenol (2‐MBAP) with NaOCl, H2O2, and O2 oxidants in an aqueous alkaline medium. The structures of 2‐MBAP and P(2‐MBAP) were characterized by UV‐vis, FT‐IR, and 1H NMR spectra. While the monomer decomposed completely up to 350°C and 57.2% of the polymer decomposed up to 1000°C. The thermal degradation of P(2‐MBAP) was also supported by the Thermo‐IR spectra recorded in the temperature range of 25–800°C. Electrical conductivity of the polymer was observed to increase 108 fold after doping with I2. Antimicrobial activities of the P(2‐MBAP) and 2‐MBAP against Sarcina lutea, Enterobacter aerogenes, Escherichia coli, Enterococcus feacalis, Klebsiella pneumoniae, Bacillus subtilis, Candida albicans, and Saccharomyces cerevisiae were also investigated. The number average molecular weight (Mn), weight average molecular weight (Mw) and polydispersity index (PDI) of the polymers were determined by gel permeation chromatography (GPC). © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41758.  相似文献   

17.
The attachment of anticancer agents to polymers is a promising approach towards reducing the toxic side‐effects and retaining the potent antitumour activity of these agents. A new tetrahydrophthalimido monomer containing 5‐fluorouracil (ETPFU) and its homopolymer and copolymers with acrylic acid (AA) and with vinyl acetate (VAc) have been synthesized and spectroscopically characterized. The ETPFU contents in poly(ETPFU‐co‐AA) and poly(ETPFU‐co‐VAc) obtained by elemental analysis were 21 mol% and 20 mol%, respectively. The average molecular weights of the polymers determined by gel permeation chromatography were as follows: Mn = 8900 g mol?1, Mw = 13 300 g mol?1, Mw/Mn = 1.5 for poly(ETPFU); Mn = 13 500 g mol?1, Mw = 16 600 g mol?1, Mw/Mn = 1.2 for poly(ETPFU‐co‐AA); Mn = 8300 g mol?1, Mw = 11 600 g mol?1, Mw/Mn = 1.4 poly(ETPFU‐co‐VAc). The in vitro cytotoxicity of the compounds against FM3A and U937 cancer cell lines increased in the following order: ETPFU > 5‐FU > poly(ETPFU) > poly(ETPFU‐co‐AA) > poly(ETPFU‐co‐VAc). The in vivo antitumour activities of all the polymers in Balb/C mice bearing the sarcoma 180 tumour cell line were greater than those of 5‐FU and monomer at the highest dose (800 mg kg?1). © 2002 Society of Chemical Industry  相似文献   

18.
Three catalysts obtained by supporting bis(n‐butylcyclopentadienyl)zirconium dichloride/methylaluminoxane on: (1) porous crosslinked poly(2‐hydroxyethylmethacrylate‐co‐styrene‐co‐divinylbenzene) particles (CAT1); (2) swellable crosslinked poly(styrene‐co‐divinylbenzene) particles (CAT2); and (3) by evaporating the catalyst precursors solution to dry powder, CAT3 were used in gas‐phase polymerization of ethylene, and ethylene/1‐hexene in a 2 L semi‐batch reactor at 80 °C and 1.4 MPa. The average polymerization activities of the three catalysts were 12.3–15.5, 4.2–10.1, and 14.3–62.9 ton PE (mol Zr h)?1 respectively. CAT1 and CAT3 produced polyethylenes with a polydispersity range of 2.3–2.7, while that of CAT2 was 3.5–6.4. The supported catalysts produced polyolefin particles with bulk density of 0.36–0.43 g ml?1, and essentially no fines. Ethylene/1‐hexene co‐polymerization (7 mol m?3 initial 1‐hexene concentration in the reactor) increased polymerization activities and produced lower‐molar‐mass co‐polymers. At 21 mol m?3 1‐hexene the polymerization activities decreased, but the relative amount of the low‐molar‐mass co‐polymer for CAT2 increased, leading to higher polydispersity. Copyright © 2006 Society of Chemical Industry  相似文献   

19.
The oxidative coupling reaction of 2,6‐dimethylphenol (DMP) with H2O2 catalyzed by four copper(II) complexes was investigated in Tris‐HNO3 buffer solution at 25°C. The kinetics of formation of diphenoquinone (DPQ, 4‐(3,5‐dimethyl‐4‐oxo‐2,5‐cyclohexadienylidene)‐2,6‐dimethyl‐2,5‐cyclohexadienone) from DMP was studied in detail. The kinetic parameters k2 and Km were obtained in the pH range of 6.0–9.0. The copper(II) complexes exhibited the optimal catalytic activity at around pH 7.0. The pH effect was reasonably explicated by the catalytic kinetic model suggested in this work. The catalytic mechanism was discussed. The deprotonized associated radical LCuI(OH?)‐?OOH was suggested as the possible predominant species to oxidize DMP. The C? C and C? O coupling products were analyzed and the ratio of poly (2,6‐dimethyl‐1,4‐phenylene ether) (PPE) to DPQ was also evaluated. Both in weak acidic (pH < 6.5) and in alkaline aqueous solution (pH > 8) were suitable to the C? O coupling reaction in our catalytic systems. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
Cross‐dehydrocoupling reactions of (R)‐methyl(1‐naphthyl)phenylsilane (>99%ee) with (S)‐methyl(1‐naphthyl)phenylsilanol (>99% ee) proceeded with 82–99% retention of configuration of chiral silicon centres in the presence of various Rh‐catalysts. Cross‐dehydrocoupling polymerization of 1,3‐dimethyl‐1,3‐diphenyl‐1,3‐disiloxanediol with 1,3‐dihydro‐1,3‐dimethyl‐1,3‐diphenyl‐1,3‐disiloxane gave poly(methylphenylsiloxane) of moderate molecular weight in toluene at 60 °C in the presence of [RhCl(cod)]2 (5.0 mol%) and triethylamine (1.0 equivalent). Assignment of the triad signals of the resulting polymer was made by 1H NMR spectroscopy of the methyl proton (I = 0.04, H = 0.09 and S = 0.14 ppm) and 13C NMR spectroscopy of the ipso carbon of the phenyl group (S = 136.7, H = 136.9, and I = 137.1 ppm). Although the reaction of optically pure (S,S)‐1,3‐dimethyl‐1,3‐diphenyl‐1,3‐disiloxanediol with 1,3‐dihydro‐1,3‐dimethyl‐1,3‐diphenyl‐1,3‐disiloxane [(S,S):(S,R):(R,R)] = 84:16:0] gave a poly(methylphenylsiloxane) of rather low molecular weight, its triad tacticity was found to be rich in syndiotacticity (S:H:I = 60:32:8) by 13C NMR spectroscopy. © 2001 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号