首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The properties of nanostructured plastics are determined by complex relationships between the type and size of the nanoreinforcement, the interface and chemical interaction between the nanoreinforcement and the polymeric chain, along with macroscopic processing and microstructural effects. In this article, we investigated the thermal and viscoelastic property enhancement on crosslinked epoxy using two types of nanoreinforcement, namely, organoion exchange clay and polymerizable polyhedral oligomeric silsesquioxane (POSS) macromers. Glass transitions of these nanocomposites were studied using differential scanning calorimetry (DSC). Small-strain stress relaxation under uniaxial deformation was examined to provide insights into the time-dependent viscoelastic behavior of these nanocomposites. Since the size of the POSS macromer is comparable to the distance between molecular junctions, as we increase the amount of POSS macromers, the glass transition temperature Tg as observed by DSC, increases. However, for an epoxy network reinforced with clay, we did not observe any effect on the Tg due to the presence of clay reinforcements. In small-strain stress relaxation experiments, both types of reinforcement provided some enhancement in creep resistance, namely, the characteristic relaxation time, as determined using a stretched exponential relaxation function increased with the addition of reinforcements. However, due to different reinforcement mechanisms, enhancement in the instantaneous modulus was observed for clay-reinforced epoxies, while the instantaneous modulus was not effected in POSS–epoxy nanocomposites. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 1993–2001, 1999  相似文献   

2.
Bicyclo[2.2.2]oct‐7‐ene‐2,3,5,6‐tetracarboxylic dianhydride (BCDA)‐based polyimide–clay nanocomposites were prepared from their precursor, namely polyamic acid, by a solution‐casting method. The organoclay was prepared by treating sodium montmorillonite (Kunipia F) clay with dodecyltrimethylammonium bromide at 80 °C. Polyamic acid solutions containing various weight percentages of organoclay were prepared from 4,4′‐(4,4′‐isopropylidenediphenyl‐1,1′‐diyldioxy)‐dianiline and BCDA in N‐methyl‐2‐pyrrolidone containing dispersed particles of organoclay at 20 °C. These solutions were cast on a glass plate using a Doctor's blade and then heated subsequently to obtain nanocomposite films. The nanocomposites were characterized using Fourier transform infrared spectroscopy, differential scanning calorimetry, thermal mechanical analysis, dynamic mechanical analysis, polarizing microscopy, scanning electron microscopy, transmission electron microscopy, wide‐angle X‐ray diffraction (WAXD) and thermogravimetric analysis. The glass transition temperature of the nanocomposites was found to be higher than that of pristine polymer. The coefficient of thermal expansion of the nanocomposites decreased with increasing organoclay content. WAXD studies indicated that the extent of silicate layer separation in the nanocomposite films depended upon the organoclay content. Tensile strength and modulus of the nanocomposite containing 1% organoclay were significantly higher when compared to pristine polymer and other nanocomposites. The thermal stability of the nanocomposites was found to be higher than that of pristine polymer in air and nitrogen atmosphere. Copyright © 2007 Society of Chemical Industry  相似文献   

3.
The effect of three different alkylammonium‐modified montmorillonite on morphological and mechanical properties of glassy epoxy‐amine nanocomposites is reported. Small amounts of clays <10 phr (part per hundred of resin) were used in each system of nanocomposite. The morphology of the prepared nanocomposites was performed by means of X‐ray diffraction and transmission electron microscopy. Differential scanning calorimetry (DSC) was used to investigate the glass transition temperatures (Tg). Mechanical properties were based on tensile characteristics (Young's modulus), impact strength, and fracture toughness. The measured moduli were compared to theoretical predictions. Scanning electron microscopy was used to study the morphological structure of the fracture surfaces of impacted specimens. It was found that at a low content of 2 phr (1.2 wt %) of nanoclays, the impact strength and the fracture toughness were improved by 77 and 90% respectively, comparatively to the neat epoxy, whereas DSC revealed a reduction of the Tg of nanocomposites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
Epoxy–clay nanocomposites were synthesized using two organoclays cured with different chemicals at different temperatures. Interlayer distance of the clay layers and curing process were investigated by X‐ray diffraction and infrared spectra. The clay treated with facilitated curing agent, 2,4,6‐tris[(dimethylamino)methyl]phenol, can exfoliate at all curing conditions, but for the other clay treated with low‐speed curing agent, p,p′‐diaminodiphenylmethane, exfoliation of the clay layers does not occur. It was found that the relative curing speed between the interlayer and extralayer was the most important factor determining clay exfoliation. Exfoliated epoxy–clay nanocomposites can be prepared if the curing speed of the interlayer is higher than that of the extralayer, irrespective of the curing agent and temperature used. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 511–517, 2003  相似文献   

5.
Rubber–clay nanocomposites were prepared by two different methods and characterized with TEM and XRD. The TEM showed clay had been dispersed to one or several layers. The XRD showed that the basal spacing in the clay was increased. It was evident that some macromolecules intercalated to the clay layer galleries. The clay layer could be uniformly dispersed in the rubber matrix on the nanometer level. The mechanical tests showed that the nanocomposites had good mechanical properties. Some properties exceeded those of rubber reinforced with carbon black, so the clay layers could be used as an important reinforcing agent as the carbon black was. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1879–1883, 2000  相似文献   

6.
A new liquid–liquid method for the synthesis of epoxy nanocomposites was developed. This new method improved the dispersion and exfoliation of the organoclay in the polymer matrix, thus improving the end‐use properties. The microstructure and physical properties of the clay/epoxy nanocomposite synthesized by the new method were studied. Rheological tests of the uncured epoxy–organoclay system demonstrated that this method resulted in a great increase in viscosity, much more than the most commonly used direct‐mixing method. The Krieger–Dougherty model successfully described the dispersion of the clay layers in the uncured epoxy. In the 5 wt % organoclay nanocomposite, compressive tests on the cured samples showed that there was a 45% increase in the maximum strength, a 10% increase in the yield strength, and a 26% increase in the modulus over the pure epoxy–amine cured system. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4286–4296, 2006  相似文献   

7.
A different series of new polystyrene–clay nanocomposites have been prepared by grafting polymerization of styrene with vinyl‐montmorillonite (MMT) clay. The synthesis was achieved through two steps. The first step is the modification of clay with the vinyl monomers, such as N,N‐dimethyl‐n‐octadecyl‐4‐vinylbenzyl‐ammonium chloride, n‐octadecyl‐4‐vinylbenzyl‐ammonium chloride, triphenyl‐4‐vinylbenzyl‐phosphonium chloride, and tri‐n‐butyl‐4‐vinylbenzyl‐phosphonium chloride. The second step is the polymerization of styrene with different ratios of vinyl‐MMT clay. The materials produced were characterized by different physical and chemical methods: (1) IR spectra, confirming the intercalation of the vinyl‐cation within the clay interlayers; (2) thermogravimetric analysis (TGA), showing higher thermal stability for PS–nanocomposites than polystyrene (PS) and higher thermal stability of nanocomposites with of phosphonium moieties than nanocomposites with ammonium moieties; (3) swelling measurements in different organic solvents, showing that the swelling degree in hydrophobic solvents increases as the clay ratio decreases; (4) X‐ray diffraction (XRD), illustrating that the nanocomposites were exfoliated at up to a 25 wt % of organoclay content; and (5) scanning electron microscopy (SEM), showing a complete dispersion of PS into clay galleries. Also, transmission electron microscopy (TEM) showed nanosize spherical particles of ~ 150–400 nm appearing in the images. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3739–3750, 2007  相似文献   

8.
In this article, we describe a method used to prepare an in situ sodium‐activated, organomodified bentonite clay/styrene–butadiene rubber nanocomposite master batch via a latex blending technique. The clay master batch was used for compound formulation. Octadecyl amine was used as an organic intercalate. The clay was purchased from local suppliers and was very cheap. Sodium chloride was used for in situ activation of the clay. The wide‐angle X‐ray diffraction data indicated that the in situ sodium activation helped to increase the intergallery distance from 1.28 to 1.88 nm. A transmission electron micrograph indicated intercalation and partial exfoliation. The thermal properties were relatively better in the case of the sodium‐activated, organomodified bentonite‐clay‐containing compound. A substantial improvement in physical properties such as the modulus, tensile strength, tear strength, and elongation at break was observed in the case of the in situ sodium‐activated compound. A cation‐exchange capacity equivalent (of the clay) of 1.5 times the octadecyl amine was the optimum dose for the modification. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
A new kind of organophilic clay, cotreated by methyl tallow bis‐2‐hydroxyethyl quaternary ammonium and epoxy resin into sodium montmorillonite (to form a strong interaction with polyamide 66 matrix), was prepared and used in preparing PA66/clay nanocomposites (PA66CN) via melt‐compounding method. Three different types of organic clays, CL30B–E00, CL30B–E12, and CL30B–E23, were used to study the effect of epoxy resin in PA66CN. The morphological, mechanical, and thermal properties have been studied using X‐ray diffraction, transmission electron microscopy (TEM), mechanical, and thermal analysis, respectively. TEM analysis of the nanocomposites shows that most of the silicate layers were exfoliated to individual layers and to some thin stacks containing a few layers. PA66CX–E00 and PA66CX–E12 had nearly exfoliated structures in agreement with the SAXS results, while PA66CX–E23 shows a coexistence of intercalated and exfoliated structures. The storage modulus of PA66 nanocomposites was higher than that of the neat PA66 in the whole range of tested temperature. On the other hand, the magnitude of the loss tangent peak in α‐ or β‐transition region decreased gradually with the increase in the clay loading. Multiple melting behavior in PA66 was also observed. Thermal stability more or less decreased with an increasing inorganic content. Young's modulus and tensile strength were enhanced by introducing organoclay. Among the three types of nanocomposites prepared, PA66CX–E12 showed the highest improvement in properties, while PA66CX–E23 showed properties inferior to that of PA66CX–E00 without epoxy resin. In conclusion, an optimum amount of epoxy resin is required to form the strong interaction with the amide group of PA66. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1711–1722, 2006  相似文献   

10.
The objective of this work is to understand the effect of shear force on the properties of epoxy–clay nanocomposites. The shear force was controlled by changing the revolutions per minute on a mechanical mixer. Differences in the aspect ratio of clay layers and differences of clay particle distribution in the epoxy matrix were caused by shear force. Shear force mechanism on epoxy–clay nanocomposites' intercalation/exfoliation were compared with the other mechanism already suggested. X‐ray diffraction, transmission electron microscopy, and scanning electron microscopy were utilized to investigate the degree of exfoliation and morphology. The mechanical and thermal properties were also studied to demonstrate the effect of shear force. This study revealed that appropriate shear force and mixing time on nanocomposite preparation was required to achieve the desired properties. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3465–3473, 2006  相似文献   

11.
Liquid‐crystalline epoxy–organoclay nanocomposites were synthesized based on two different liquid‐crystalline epoxy monomers, 4, 4′‐diglycidyloxybiphenyl (BP) and hydroquinone bis(4‐epoxypropylbenzoate) (HB). The X‐ray diffraction patterns of BP–organoclay (93A) hybrids indicate that BP diffuses into the organoclay layers and increases d‐spacing from 2.3 to 3.7 nm either in a solvent or in the melting state. The dynamic differential scanning calorimetry results indicate that the alkylammonium ion in the clay gallery catalyzes the epoxy ring‐opening reaction with a diamine curing agent. The fast intergallery polymerization forms the exfoliated nanocomposite if the content of organoclay is below 2 %. But an intercalated nanocomposite is obtained with an increase of organoclay to 10 %. The nanocomposite with 5 % of organoclay is a mixture of the two types. Polarizing optical microscopy photographs of the cured products showed that the liquid‐crystalline phase is formed with or without organoclay. Copyright © 2005 Society of Chemical Industry  相似文献   

12.
Nanoscale colloidal silica showed high reactivity toward curing epoxy resins to form epoxy–silica nanocomposites under mild conditions. Adding a certain amount (5000 ppm) of magnesium chloride lowered the activation energy of the reaction from 71 to 46 kJ/mol. Less and more magnesium chloride both exhibited counter action on lowering the activation energy of the curing reaction. Tin chloride dihydrate and zinc acetylacetonate hydrate were also added into the curing compositions, however, showing no significant effect on promoting the curing reaction. Through this curing reaction, epoxy–silica nanocomposites containing high silica contents up to 70 wt % were obtained. Therefore, this reaction provided a novel and convenient route in preparation of epoxy–silica nanocomposites. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1237–1245, 2005  相似文献   

13.
In this work, the influence of curing temperature on microstructures of isobutylene–isoprene rubber/clay nanocomposites (IIRCNs) prepared by melt compounding was characterized using wide‐angle X‐ray diffraction and TEM. The gas barrier and tensile properties of IIRCN cured under different temperature were examined. The results reveal that high pressure, curing reactions, and reactions of amine intercalants with curing agents together play important roles on determining the final microstructures of cured IIRCNs. Changing curing temperature would dramatically alter intercalated structure, dispersion homogeneity, filler–rubber interaction strength, and crosslinking density of obtained IIRCN, resulting in great difference in final properties. Finally, some suggestions for the preparation of successful RCNs were proposed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
Dicyanate–clay nanocomposites comprising a dicyanate resin and a type of organically modified clay were prepared and characterized, and their thermomechanical properties were investigated. The organically modified clay had silicate layers of nanometer size intercalated with an organic modifier, which improved the compatibility between the clay and organic materials, such as dicyanate resins. Dynamic mechanical analysis was performed to investigate the thermomechanical properties of the dicyanate–clay nanocomposites containing various amounts of the clay. The storage modulus of the nanocomposites below their glass‐transition temperatures slightly increased with increasing clay content. The glass‐transition temperature of the dicyanate–clay nanocomposites increased with increasing clay content. The nanostructures of the dicyanate–clay nanocomposites were characterized by transmission electron microscopy and X‐ray diffraction analysis. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2629–2633, 2003  相似文献   

15.
Nanocomposites were prepared with different grades of nitrile–butadiene rubber (NBR) [with nitrile (CN) contents of 26, 35, and 42%] with organoclay (OC) by a melt‐compounding process. The rubber/clay nanocomposites were examined by transmission electron microscopy (TEM) and X‐ray diffraction (XRD). An increase in the polarity of NBR affected the XRD results significantly. The dispersion level of the nanofiller in the nanocomposites was determined by a function of the polarity of the rubber, the structure of the clay, and their mutual interaction. The intercalated structure and unintercalated structure coexisted in the lower polar of NBR. In addition, a relatively uniformly dispersed state corresponded to a more intercalated structure, which existed in the higher polar of NBR matrix. Furthermore, high‐pressure vulcanization changed the extent of intercalation. The mechanical properties and gas barrier properties were studied for all of the compositions. As a result, an improvement in the mechanical properties was observed along with the higher polarity of NBR. This improvement was attributed to a strong interaction of hydrogen bonding between the CN of NBR and the OH of the clay. Changes in the gas barrier properties, together with changes in the polarity of the rubbers, were explained with the help of the XRD and TEM results. The higher the CN content of the rubber was, the more easily the OC approached to the nanoscale, and the higher the gas barrier properties were. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
An intercalated initiator was synthesized and used for preparation of clay/polyurethane nanocomposites by UV irradiation. Organoclays containing initiator groups were prepared by cationic exchange process which acted as both suitable intercalant and photoinitiator. These modified clays were then dispersed in the mixture of urethane acrylate and hexanediol diacrylate in different loading, then situ photopolymerized. Intercalated and exfoliated nanocomposite structure were evidenced by both X‐ray diffraction spectroscopy and Transmission Electron Microscope. Thermal properties and morphologies of the resultant nanocomposites were also investigated. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

17.
The nanocomposites of nitrile–butadiene rubber (NBR) and organo‐montmorillonite modified by hexadecyltrimethyl ammonium bromide (HMMT) were prepared by the reactive mixing intercalation method in the presence of the resorcinol and hexamethylenetetramine complex (RH). The structure of the NBR–RH–HMMT nanocomposites was characterized by XRD, TEM, FTIR, determination of crosslinking density, and so on. The results showed that the d‐spacing of HMMT increased substantially with RH addition and the layers of HMMT were dispersed in rubber matrix on a nanometer scale. The mechanical properties of the NBR–RH–HMMT nanocomposites were far superior to those of NBR–HMMT composites, and the glass transition temperature of NBR–RH–HMMT nanocomposite was higher than that of NBR. The reactive mixing intercalation method by introducing RH could enhance the interface combination between the rubber and the organoclay through the interactions of RH with NBR and modified clay. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1905–1913, 2006  相似文献   

18.
Resole‐type phenol resin–clay nanocomposites have been prepared successfully by melt compounding phenol resin with organophilic clay. In the resulting phenol resin–clay nanocomposite, the silicate layers of the clay were exfoliated and dispersed as monolayers. The nanocomposite exhibited higher long‐term heat resistance when compared with unmodified phenol resin. It was surmised that the silicate layers of the clay acted as barriers to oxygen penetration into the resin, as the degree of heat degradation of the nanocomposite was much lower than that of the straight phenol resin. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3236–3240, 2006  相似文献   

19.
A kind of novel polyether polyurethane (PU)/clay nanocomposite was synthesized using poly(tetramethylene glycol), 4,4′‐diphenylmethane diisocyanate (MDI), 1,6‐hexamethylenediamine, and modified Na+‐montmorillonite (MMT). Here, organicly modified MMT (O‐MMT) was formed by applying 1,6‐hexamethylenediamine as a swelling agent to treat the Na+‐MMT. The X‐ray analysis showed that exfoliation occurred for the higher O‐MMT content (40 wt %) in the polymer matrix. The mechanical analysis indicated that, when the O‐MMT was used as a chain extender to replace a part of the 1,2‐diaminopropane to form PU/clay nanocomposites, the strength and strain at break of the polymer was enhanced when increasing the content of O‐MMT in the matrix. When the O‐MMT content reached about 5%, the tensile strength and elongation at break were over 2 times that of the pure PU. The thermal stability and the glass transition of the O‐MMT/PU nanocomposites also increased with increasing O‐MMT content. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 6–13, 2006  相似文献   

20.
The linear and nonlinear shear rheological behaviors of poly(propylene) (PP)/clay (organophilic‐montmorillonite) nanocomposites (PP/org‐MMT) were investigated by an ARES rheometer. The materials were prepared by melt intercalation with maleic anhydride functionalized PP as a compatibilizer. The storage moduli (G′), loss moduli (G″), and dynamic viscosities of polymer/clay nanocomposites (PPCNs) increase monotonically with org‐MMT content. The presence of org‐MMT leads to pseudo‐solid‐like behaviors and slower relaxation behaviors of PPCN melts. For all samples, the dependence of G′ and G″ on ω shows nonterminal behaviors. At lower frequency, the steady shear viscosities of PPCNs increase with org‐MMT content. However, the PPCN melts show a greater shear thinning tendency than pure PP melt because of the preferential orientation of the MMT layers. Therefore, PPCNs have higher moduli but better processibility compared with pure PP.© 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2427–2434,2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号