首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为了研究复合(Ti,Mo)C粒子的析出行为和强化效应选取了一种含钛的Cr-Mo钢作为研究对象力对此钢分别进行880和1350℃淬火并回火。化学萃取相分析结果表明,当淬火温度为880℃时,(Ti,Mo)C粒子的尺寸主要分布在18~36,36~60,60~96 nm,这些粒子是在热轧过程中析出的。当淬火温度为1350℃时,回火过程中新析出了1~5 nm的(Ti,Mo)C粒子,这些新析出的(Ti,Mo)C粒子产生了一个明显的二次硬化平台,析出强化量约为165 MPa。新析出的(Ti,Mo)C粒子中的Ti/Mo原子比随回火温度的升高而降低并稳定在1左右。  相似文献   

2.
针对Ti微合金化钢和Ti-Mo复合微合金化钢,采用淬火+回火的热处理工艺,利用扫描电镜(SEM)和透射电镜(TEM)等研究了回火温度和Mo对Ti微合金化钢组织和力学性能的影响。研究结果表明:随回火温度升高,板条马氏体逐渐转变成铁素体,两种试验钢的硬度都呈现先增大后减小的趋势;最佳的回火温度为600℃。对比两种试验钢的研究结果表明,Mo的加入使得Ti微合金化钢回火过程中板条马氏体转变为铁素体的倾向增强,析出相尺寸变小,可获得10 nm以下的(Ti,Mo)C析出颗粒,提高Ti微合金化钢的综合力学性能。  相似文献   

3.
研究了淬火温度对高Ti低合金耐磨钢组织转变、析出相和力学性能的影响,并分析了组织演变和力学性能变化的原因。结果表明:试验钢经不同温度淬火和200 ℃回火后的组织均为高位错密度板条马氏体;析出相尺寸主要为微米-亚微米-纳米三种尺度,微米级析出相呈杆棒状,亚微米以及纳米析出相呈球状,马氏体板条上分布着细小的(Ti, Mo)C析出相。随着淬火温度的升高,试验钢的屈服强度、抗拉强度和维氏硬度均先升高后降低,均在920 ℃时有最大值,分别为1248 MPa、1535 MPa和434 HV,此时伸长率为10.0%。随淬火温度升高,纳米级析出相逐渐回溶,数量减少且尺寸逐渐长大,沿轧制方向被压扁拉长的原奥氏体晶粒尺寸以及马氏体板条块尺寸略有增大,但马氏体板条宽度却无明显长大。大量的弥散分布的5~10 nm的(Ti, Mo)C粒子是促进耐磨钢硬度升高的主要因素。细小的(Ti, Mo)C析出相逐渐长大以及原奥氏体晶粒的增大都不利于耐磨钢硬度的提高。  相似文献   

4.
对球化退火后的5Cr8Mo2Si V刃具钢进行淬火和回火工艺的探究,用SEM和EDS对淬、回火后的显微形貌进行分析,用碳化物电解萃取和XRD分析等研究了5Cr8Mo2Si V刃具钢淬、回火过程中碳化物的析出行为,并用Jmat-Pro模拟回火过程中碳化物析出相的变化。结果表明:5Cr8Mo2Si V钢退火试样在1100℃淬火+520℃回火时有明显的二次硬化现象,球化退火组织中存在VC、Cr_(23)C_6、Cr_7C_3、Fe_3C、Si C和Mo_6C类碳化物。Mo_6C、Si C、Fe_3C、Cr_7C_3和Cr_(23)C_6型碳化物随着淬火温度升高依次溶入马氏体基体,最终只有VC分布在基体上。Mo_2C、VC、Cr_7C_3和Cr_(23)C_6型碳化物在回火过程中从马氏体中析出,且Mo_2C和VC型碳化物在520℃回火析出量出现峰值。结合Jmat-Pro模拟结果发现,5Cr Mo2Si V钢的二次硬化现象是残留奥氏体二次淬火和Mo_2C粒子的第二相强化共同导致,且Mo_2C粒子第二相强化效应符合位错切过机制。  相似文献   

5.
采用热脱氢分析装置 (TDS) 研究了含复合 (Ti,Mo)C析出相的马氏体钢的氢的捕获与解吸附行为。结果表明,36-60 nm的未溶球形(Ti,Mo)复合析出相在室温电化学充氢过程中不能捕获氢,而回火析出的1-5 nm的复合 (Ti,Mo)C析出相是有效的氢陷阱,尽管其氢陷阱激活能相对较低,为16.4-22.1 kJ/mol,与晶界、位错处的氢陷阱激活能相近,同时远低于纯的共格TiC析出相的氢陷阱激活能,但在大气中放置时,被回火析出的1-5 nm的复合 (Ti,Mo)C析出相捕获的氢无法解吸。  相似文献   

6.
符长璞  憨勇 《金属学报》1993,29(3):35-39
研究了淬火20CrllMoVNbNB钢在室温-750℃不同温度回火0.5—100h后的硬度相析出变化,析出相中合金元素含量变化以及回火激活能等,证明在低于400℃时,该钢的回火过程受C原子在α-Fe中扩散所控制;在高于400℃时,回火过程受合金元素Cr(以及Mo,V)在α-Fe中扩散所控制  相似文献   

7.
采用透射电子显微镜研究了960 MPa级工程机械用钢淬火及不同温度回火后显微组织及析出相的变化规律.结果表明:920℃淬火后,显微组织以板条马氏体为主,还有极少量孪晶马氏体,马氏体发生自回火现象.在400℃以下回火,(Ti,Nb)(C,N)尺寸和数量没有明显变化.500℃回火后,在晶界和亚晶界开始析出(Fe、Mn、Cr)3C合金渗碳体.600℃回火后,在晶内和晶界析出(Fe,Mn,Cr,Ni,Mo,V)3C合金渗碳体,Mo2C大量析出.650℃回火后,VC大量析出,发生再结晶,开始多边形化.  相似文献   

8.
利用TEM,XRD和Vickers硬度计等研究了回火时间对高Ti微合金化马氏体钢组织及力学性能的影响,阐明了高Ti微合金化马氏体钢在回火过程中析出强化和组织软化之间的交互作用规律.结果表明,高Ti钢在600℃不同时间回火,硬度表现出不同的趋势.10~300 s回火,硬度不断升高,是由于Ti C的析出强化作用远大于基体回复而导致的软化作用;300 s~10 h回火,硬度保持长时间的平台,是由于细小Ti C粒子的不断析出,且5 nm以下的粒子所占比例提高,不断增加的细小Ti C粒子所产生的强化抵消了由于基体组织软化导致的硬度下降;10~20 h回火,硬度快速降低,且降低速率高于不含Ti钢,Ti C粒子的平均尺寸由10 h的2.76 nm粗化到20 h的3.15 nm.计算表明,Ti C粒子的粗化引起硬度降低11.94 HV,基体软化引起硬度降低24.56 HV,表明基体软化是硬度降低的主要因素,而Ti C粒子的粗化加速了高Ti钢硬度的降低,是导致硬度降低的又一重要因素.  相似文献   

9.
采用热脱氢分析装置(TDS)研究了含复合(Ti, Mo)C析出相的马氏体钢的氢的捕获与解吸附行为。结果表明,36~60 nm的未溶球形(Ti, Mo)复合析出相在室温电化学充氢过程中不能捕获氢,而回火析出的1~5 nm的复合(Ti, Mo)C析出相是有效的氢陷阱,尽管其氢陷阱激活能相对较低,为16.4~22.1k J/mol,与晶界、位错处的氢陷阱激活能相近,同时远低于纯的共格Ti C析出相的氢陷阱激活能,但在大气中放置时,被回火析出的1~5 nm的复合(Ti, Mo)C析出相捕获的氢无法解吸。  相似文献   

10.
高婕 《铸造技术》2014,(11):2576-2578
以Cr、Mo和V微合金化模具钢为对象,研究了淬火和回火温度对模具钢力学性能和显微组织的影响。结果表明,淬火温度为1 080℃时模具钢具有较好的硬度与冲击韧度。在1 080℃淬火580℃回火条件下,模具钢基体中大量弥散分布的纳米级V(C,N)、Cr23C6和Mo2C析出物,起到了有效的弥散强化作用。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

18.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号