首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper deals with the problem of H guaranteed cost control for linear parameter varying (LPV) systems subject to the gain constraint. Specifically, our main goal is to design a controller such that the closed‐loop system is exponentially stable with the H performance index, the quadratic performance index, and the gain within the desired constraints over the entire parameter region. In order to achieve this goal, less conservative and more practical sufficient conditions for the existence of the state feedback controller are proposed by introducing the parameter dependent Lyapunov function and many extra freedom degrees in terms of linear matrix inequalities and a free parameter matrix. The parameter matrix aspecially can regulate the gain freely without the influence of the desired performance to meet the additional design criteria enhancing the practicability and the design flexibility. As a special case, relevant results are extended to design a static output feedback controller. One numerical example is used to show advantages of the proposed approach.  相似文献   

2.
In this paper, the robust delay‐dependent H control for a class of uncertain systems with time‐varying delay is considered. An improved state feedback H control is proposed to minimize the H‐norm bound via the LMI optimization approach. Based on the proposed result, delay‐dependent criteria are obtained without using the model transformation technique or bounded inequalities on cross product terms. The linear matrix inequality (LMI) optimization approach is used to design the robust H state feedback control. Some numerical examples are given to illustrate the effectiveness of the approach.  相似文献   

3.
This paper considers mean‐square exponential stability and H control problems for Markovian jump systems (MJSs) with time delays which are time‐varying in an interval and depend on system mode. By exploiting a novel Lyapunov‐Krasovskii functional which takes into account the range of delay, and by making use of some techniques, new delay‐range‐dependent stability result and bounded real lemma for MJSs are obtained, where the introduction of the lower bound of delay is shown to be advantageous for reducing conservatism. Moreover, a sufficient condition for the solvability of the H control problem is derived in terms of linear matrix inequalities. Finally, illustrative examples are presented to show the advantage and effectiveness of the proposed approaches. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

4.
This paper deals with the gain‐scheduled H filtering problem for a class of parameter‐varying systems. A sufficient condition for the existence of a gain‐scheduled filter, which guarantees the asymptotic stability with an H noise attenuation level bound for the filtering error system, is given in terms of a finite number of linear matrix inequalities (LMIs). The filter is designed to be parameter‐varying and have a nonlinear fractional transformation structure. A numerical example is presented to demonstrate the application of the proposed method. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
This paper is concerned with the quantized state feedback H control problem for discrete‐time linear time‐invariant systems. The quantizer considered here is dynamic and composed of an adjustable “zoom” parameter and a static quantizer. Static quantizer ranges are with practical significance and fully considered here. A quantized H controller design strategy is proposed with taking quantizer errors into account, where an iterative linear matrix inequality (LMI) based optimization algorithm is developed to minimize static quantizer ranges with meeting H performance requirement for quantized closed‐loop systems. An example is presented to illustrate the effectiveness of the proposed method. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

6.
This paper investigates event‐triggered output feedback H control for a networked control system. Transmitted through a network under an event‐triggered scheme, the sample outputs of the plant are used to drive the dynamical output feedback controller to generate a new control signal in the discrete‐time domain. The discrete‐time control signals are also transmitted through the network to drive the plant. As a result of two types of transmission delays, the controlled plant and the dynamical output feedback controller are driven by the discrete‐time outputs and control signals at different instants of time. An interval decomposition method is introduced to place the controlled plant and the output feedback controller into the same updated time interval but with updated signals at different instants. Based on a proper Lyapunov‐Krasovskii functional, sufficient conditions are derived to ensure H performance for the controlled plant. Finally, numerical simulations are used to demonstrate the practical utility of the proposed method.  相似文献   

7.
In this paper, an H sampled‐data control problem is addressed for semilinear parabolic partial differential equation (PDE) systems. By using a time‐dependent Lyapunov functional and vector Poincare's inequality, a sampled‐data controller under spatially averaged measurements is developed to stabilize exponentially the PDE system with an H control performance. The stabilization condition is presented in terms of a set of linear matrix inequalities. Finally, simulation results on the control of the diffusion equation and the FitzHugh‐Nagumo equation are given to illustrate the effectiveness of the proposed design method.  相似文献   

8.
This paper aims to investigate the problem of H output tracking control for a class of switched linear parameter‐varying (LPV) systems. A sufficient condition ensuring the H output tracking performance for a switched LPV system is firstly presented in the format of linear matrix inequalities. Then, a set of parameter and mode‐dependent switching signals are designed, and a family of switched LPV controllers are developed via multiple parameter‐dependent Lyapunov functions to enhance control design flexibility. Even though the H output tracking control problem for each subsystem might be unsolvable, the problem for switched LPV systems is still solved by the designed controllers and the designed switching law. Finally, the effectiveness of the proposed control design scheme is illustrated by its application to an H speed adjustment problem of an aero‐engine. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, we investigate the H control problem for a class of cascade switched nonlinear systems consisting of two nonlinear parts which are also switched systems using the multiple Lyapunov function method. Firstly, we design the state feedback controller and the switching law, which guarantees that the corresponding closed‐loop system is globally asymptotically stable and has a prescribed H performance level. This method is suitable for a case where none of the switched subsystems is asymptotically stable. Then, as an application, we study the hybrid H control problem for a class of nonlinear cascade systems. Finally, an example is given to illustrate the feasibility of our results. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

10.
This paper presents a solution to the singular H control problem via state feedback for a class of nonlinear systems. It is shown that the problem of almost disturbance decoupling with stability plays a fundamental role in the solution of the considered problem. We also point out when the singular problem can be reduced to a regular one or solved via standard H technique. We must stress that the solution of the singular problem is obtained without making any approximation of it by means of regular problems. © 1997 John Wiley & Sons, Ltd.  相似文献   

11.
The constraints on the PID gains, which are derived from the H norm performance index by discretization of the frequency, are convex or concave depending on frequencies. This problem is a non‐convex problem, and a new method of approximating these constraints as adequate linear inequalities is proposed. Then, the optimal solution can be efficiently and successfully searched for by applying linear programming iteratively. This method is compared with methods based on barrier function and linear matrix inequality. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
This paper investigates the robust H control problem for continuous‐time piecewise time‐delay systems by using piecewise continuous Lyapunov function. The uncertainties of the systems under consideration are expressed in a linear fractional form. A strict linear matrix inequality approach is developed to obtain delay‐dependent asymptotic stability conditions and H performance. The H controller design problem is solved by exploiting the cone complementarity linearization (CCL) method. Finally an example is given to illustrate the application of the proposed approach. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

13.
This paper addresses the finite‐time H bumpless transfer control problem for switched systems. The main idea lies in designing a state‐feedback controller with amplitude limitation and a state‐dependent switching law to reduce control bumps caused by switching. First, a local bumpless transfer condition is proposed to limit the amplitude of switching controllers at switching points. Second, by introducing a state‐dependent switching law, a prescribed finite‐time H bumpless transfer control performance is attained even if it does not hold for each subsystem or system state remaining on a switching surface. Third, a sufficient condition verifying the solvability of finite‐time H bumpless transfer control problem is established by resorting to multiple Lyapunov function method. Finally, the effectiveness of developed method is illustrated by a numerical example.  相似文献   

14.
This paper proposes a novel three‐dimensional missile guidance law design based on nonlinear H control. The complete nonlinear kinematics of pursuit–evasion motion is considered in the three‐dimensional spherical co‐ordinates system; neither linearization nor small angle assumption is made here. The nonlinear H guidance law is expressed in a simple form by solving the associated Hamilton–Jacobi partial differential inequality analytically. Unlike adaptive guidance laws, the implement of the proposed robust H guidance law does not require the information of target acceleration, while ensuring acceptable interceptive performance for arbitrary target with finite acceleration. The resulting pursuit–evasion trajectories for both the H‐guided missile and the worst‐case target are determined in closed form, and the performance robustness against variations in target acceleration, in engagement condition, and in control loop gain, is verified by numerical simulations. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
We develop a novel frequency‐based H‐control method for a large class of infinite‐dimensional linear time‐invariant systems in transfer function form. A major benefit of our approach is that reduction or identification techniques are not needed, which avoids typical distortions. Our method allows to exploit both state‐space or transfer function models and input/output frequency response data when only such are available. We aim for the design of practically useful H‐controllers of any convenient structure and size. We use a nonsmooth trust‐region bundle method to compute arbitrarily structured locally optimal H‐controllers for a frequency‐sampled approximation of the underlying infinite‐dimensional H‐problem in such a way that (i) exponential stability in closed loop is guaranteed and that (ii) the optimal H‐value of the approximation differs from the true infinite‐dimensional value only by a prior user‐specified tolerance. We demonstrate the versatility and practicality of our method on a variety of infinite‐dimensional H‐synthesis problems, including distributed and boundary control of partial differential equations, control of dead‐time and delay systems, and using a rich testing set.  相似文献   

16.
The H-control problem with a non-zero initial condition for infinite dimensional systems is considered The initial conditions are assumed to be in some subspace. First the H problem with full information is considered and necessary and sufficient conditions for the norm of an input-output operator to be less than a given number are obtained, The characterization of all admissible controllers is also given. This result is then used to solve the general H control problem and the filtering problem with initial uncertainty. The filtering problem on finite horizon involves the estimate of the state at final time. The set of all suboptimal filters is given both on finite and infinite horizons.  相似文献   

17.
This paper deals with delay‐dependent H control for discrete‐time systems with time‐varying delay. A new finite sum inequality is first established to derive a delay‐dependent condition, under which the resulting closed‐loop system via a state feedback is asymptotically stable with a prescribed H noise attenuation level. Then, an iterative algorithm involving convex optimization is proposed to obtain a suboptimal H controller. Finally, two numerical examples are given to show the effectiveness of the proposed method. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
This paper investigates the problem of network‐based control for stochastic plants. A new model of stochastic time‐delay systems is presented where both network‐induced delays and packet dropouts are taken into consideration for a sampled‐data network‐based control system. This model consists of two successive delay components in the state, and we solve the network‐based H control problem based on this model by a new stochastic delay system approach. The controller design for the sampled‐data systems is carried out in terms of linear matrix inequalities. Finally, we illustrate the methodology by applying these results to an air vehicle control problem. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
The present paper considers a variant of the standard H control problem which allows one to use weighting functions having jω poles. Using the solution, one can design H controllers having prescribed jω poles such as internal models. To solve the problem, the authors propose a new requirement of closed-loop stability, called essential stability, and alternative standing assumptions imposed on the generalized plant. To write the results in the form of the so-called 2-ARE solution, the authors introduce the notion of quasi-stabilizing solutions to the algebraic Riccati equations arising in H control. The solution involves the same Riccati equations and parametrization of the controllers given by Glover and Doyle except the stability requirement on the solutions to the Riccati equations.  相似文献   

20.
The current article discusses the H disturbance attenuation control design problem for one‐sided Lipschitz systems in finite frequency domain. Models containing norm‐bounded parameter uncertainties, disturbances, and input nonlinearities are considered. By contrast to existing full frequency methods, the H controller is computed depending on the frequency ranges of disturbances. The finite frequency disturbance attenuation index is initially defined. Thanks to Finsler's lemma, sufficient and less conservative analysis conditions are also derived for the closed‐loop system. Then, synthesis conditions in the low, middle, and high frequency ranges as well as the whole frequency range, are formulated in terms of linear matrix inequalities. At last, to prove the effectiveness and the superiority of the proposed approach, a physical example is used and a comparative study is done.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号