共查询到20条相似文献,搜索用时 62 毫秒
1.
提升机载吊舱的后勤保障能力,适应吊舱测试中多型号、多故障类型和测试环境动态变化的测试要求,是打赢现代化战争的重要保障。支持向量机(SVM)算法适用于小样本、高维度、非线性分类问题,SVM相关参数是影响算法性能的重要因素。基于K-CV算法和粒子群算法两种改进的SVM模型可以实现SVM参数优化,K-CV算法可以交叉验证优化模型参数,粒子群算法可以对SVM参数进行动态寻优,建立多核SVM吊舱故障诊断模型。两种算法都可以提高吊舱故障诊断模型的准确率,提高模型的学习能力和泛化能力,有效对吊舱的故障进行定量和定位诊断。 相似文献
2.
3.
《电子技术应用》2016,(6)
针对滚动轴承极易损伤,振动信号表现出非线性、非平稳性等特点,提出一种基于局部特征尺度分解(LCD)和改进支持向量机(SVM)的滚动轴承故障诊断算法。首先对采集到的轴承振动信号进行LCD,分解得到一系列内禀尺度分量(ISC),通过与经验模态分解(EMD)对比研究,证明了LCD方法的优越性;然后计算所有分量的能量熵值,提取出轴承信号的敏感特征集,输入到经过遗传算法(GA)进行参数优选后的SVM识别模型进行轴承状态的诊断识别。实验研究表明,基于LCD和改进SVM的轴承诊断算法能较好地提取出轴承故障特征信息,对4种轴承状态的识别率高达90%,是一种较为有效的轴承故障诊断方法。 相似文献
4.
针对传统的基于支持向量机(support vector machine, SVM)的变压器故障诊断中变压器的故障特征和SVM参数难以确定的问题,本文提出了一种基于改进遗传算法(improved genetic algorithm, IGA)和SVM的变压器故障诊断模型。该方法以SVM作为分类器,以常用故障诊断方法的20中特征量作为初始特征集合,采用二进制方式将变压器的故障特征和SVM的参数编码到同一条染色体,利用改进遗传算法对变压器的故障特征和分类器的参数进行联合优化。因为变压器的故障特征和SVM的参数是互相影响的,因此对两者做一个联合优化是比较合理的方案。然后依据最优故障特征和最优参数进行模型训练,利用训练好的模型对测试集进行诊断。仿真结果表明所提方法具有较高的故障诊断准确率。 相似文献
5.
6.
基于改进支持向量机的仿真电路故障诊断研究 总被引:4,自引:4,他引:4
研究电路的故障问题,应提高快速性和准确性。为提高仿真电路故障诊断效率,给出了一种基于改进支持向量机的仿真电路故障诊断方法。首先通过小波包变换实现了信号的能量特征提取,根据主元分析完成了特征压缩;其次针对支持向量机多分类一对一方法存在的不可分类区,将其与最近邻分类法相结合,实现了电路的故障诊断,并提出了一种混合遗传算法实现了小波函数和支持向量机参数的同步选择;最后通过一仿真电路的仿真实验,与BP,RBF和PNN等神经网络对比,结果显示基于支持向量机的方法诊断精度最高,达到98%,为设计提供参考依据。 相似文献
7.
提出了一种基于遗传算法优化支持向量机的故障诊断模型.它利用遗传算法对支持向量机同时对传统的时域特征参量子集和核参数同时优化,以达到选择最优的设备故障主导特征参数组合的目的,实现对机器不同类型故障的识别.对齿轮故障诊断的结果表明它有效提高了多分类支持向量机的故障分类准确性. 相似文献
8.
9.
10.
11.
基于粒子群算法优化支持向量机汽车故障诊断研究 总被引:1,自引:0,他引:1
汽车故障检测和诊断技术一直是国内外研究热点问题。支持向量机用于汽车故障诊断时,其多分类组合决策对分类正确率及诊断时间有很大影响,为了有效提高汽车系统故障诊断的效率和精度,提出了一种基于粒子群算法优化层次支持向量机汽车故障诊断检测方法。针对分解支持向量机具有测试时间短、结构难以确定的特点,利用粒子群算法,依据最大间隔距离原则优化层次支持向量机模型,使每个节点的支持向量机具有最大分类间隔,减少了误差积累,从而优化了多级二叉树结构的SVM,实现故障的分级诊断。仿真实验结果表明,提出的算法在所有参比模型中精度最高,能高效地对汽车系统的故障进行检测与定位,具有较强的泛化能力,同时缩短了故障诊断时间。 相似文献
12.
基于鲸鱼算法优化LSSVM的滚动轴承故障诊断 总被引:1,自引:0,他引:1
针对轴承振动信号中的故障特征难以提取的问题,提出一种基于改进的鲸鱼算法优化最小二乘支持向量机(least square support vector machine, LSSVM)的故障分类方法.首先,利用变分模态分解(variational mode decomposition, VMD)对原始信号进行分解,使用中心频率法解决VMD中分解参数K值的选取问题;其次,计算每个IMF分量的多尺度排列熵值,提取信号故障特征;再次,针对鲸鱼算法(whale optimization algorithm, WOA)收敛速度慢和精度低的问题,引入冯诺依曼拓扑结构和自适应权重进行改进,可以适当地调整全局搜索能力和局部搜索能力之间的平衡;最后,采用改进后的鲸鱼算法优化LSSVM核函数的参数和惩罚因子,建立滚动轴承故障诊断模型,并利用美国凯斯西储大学提供的轴承数据集进行仿真实验.实验结果表明,所提方法的故障分类性能更好,准确率更高. 相似文献
13.
14.
为解决神经网络训练需要大量的样本,且容易陷入局部最优,收敛速度慢等缺点,采用改进模糊聚类(IFC)和支持向量机(SVM)相结合的模拟电路故障诊断方法.利用小波分解技术提取待诊断电路的测试信息作为故障特征,在模糊聚类算法中为消除孤立点和噪声的影响,对不同样本点引入权值以提高聚类效果,结合改进的模糊聚类算法进一步降低故障特征的维数,将其作为支持向量机的输入量,进行模型训练并预测模拟电路的故障.仿真结果表明,此方法应用于电路故障诊断有效削减计算复杂度并提高了诊断精度. 相似文献
15.
针对低可测性模拟电路中存在的模糊组问题,提出一种模拟电路单个软故障诊断的方法.该方法对被测电路的故障进行模糊聚类,根据聚类的有效性指标自适应确定聚类数,并利用聚类的信息来确定可测元件集,引入支持向量机对故障进行分类识别.支持向量机结构简单、泛化能力强.最后,以模拟和混合信号测试标准电路证实了文中方法的有效性. 相似文献
16.
17.
对换流站阀水冷系统主泵轴承的故障诊断方法进行了比较研究.采用支持向量机作为分类工具,分别利用时域特征值和小波包分解取样本熵作为样本训练,比较分类准确率,并择优用于换流站阀水冷系统主泵的轴承故障诊断.首先,利用轴承故障试验台的数据,对采用时域特征值和小波包分解取样本熵作为样本训练的分类准确率进行了比较,结果表明小波包分解取样本熵值比时域特征参数更适合用于特征故障分类.然后将小波包分解取样本熵值用于换流站阀水冷系统主泵的轴承故障诊断,结果显示分类准确率达98%,完全满足工程运用需求. 相似文献
18.
19.
针对基于SVM的模拟电路故障诊断中诊断参数的调节是通过试凑法或按照全局最优的原则确定的,没有考虑实际诊断要求,无法进行各诊断环节参数同时调整优化的现状。提出一种适应度模型用于遗传算法参数寻优,把实际电路诊断要求量化成参数指标引入模拟电路故障诊断的优劣评估中;建立了基于遗传算法的电路诊断模型参数闭环寻优框架,对诊断系统的各部分参数优化进行整体度量,并分析了参数搜索算法的收敛性。通过实例诊断分析了闭环故障诊断参数寻优框架下各部分的参数制定对决策的影响,说明了建立的闭环故障诊断模型参数寻优框架和搜索算法的有效性和实用性。 相似文献
20.
随着高速铁路的快速发展,道岔故障频发,成为一直是急需解决的重大安全问题;首先从道岔的运行原理出发,研究了转辙机拉力对道岔的影响;然后进行了转辙机的电动机的功率和电流参数的比较,结果表明,转辙机拉力更能直观反映道岔的运行情况;最后提出了用转辙机拉力参数实现基于粒子群算法优化支持向量机(PSO-SVM)的道岔故障诊断算法;经过对实际数据的处理,表明此种诊断方法对道岔的故障有较好的分辨能力。 相似文献